[1]周强,段钰锋,洪亚光,等.活性炭喷射脱汞实验研究和预测模型[J].东南大学学报(自然科学版),2013,43(6):1258-1263.[doi:10.3969/j.issn.1001-0505.2013.06.024]
 Zhou Qiang,Duan Yufeng,Hong Yaguang,et al.Experimental study on mercury removal by activated carbon injection and predictive model[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1258-1263.[doi:10.3969/j.issn.1001-0505.2013.06.024]
点击复制

活性炭喷射脱汞实验研究和预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第6期
页码:
1258-1263
栏目:
环境科学与工程
出版日期:
2013-11-20

文章信息/Info

Title:
Experimental study on mercury removal by activated carbon injection and predictive model
作者:
周强段钰锋洪亚光朱纯佘敏韦红旗
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 东南大学能源与环境学院, 南京 210096
Author(s):
Zhou Qiang Duan Yufeng Hong Yaguang Zhu Chun She Min Wei Hongqi
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
活性炭 喷射脱汞 预测模型 敏感性分析
Keywords:
activated carbon injection demercuration predictive model sensitivity analysis
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2013.06.024
摘要:
在模拟烟气管道喷射脱汞实验装置上进行了活性炭喷射脱汞实验,考察了活性炭粒径、停留时间、活性炭浓度对汞脱除的影响.针对活性炭喷射脱汞过程,建立了包含质量平衡、传质过程及活性炭表面等温吸附模型在内的活性炭喷射脱汞综合预测模型,对模型参数进行了敏感性分析.实验结果表明,增加活性炭的停留时间与浓度,减小活性炭的粒径均能增加活性炭脱汞率.仿真结果表明:建立的活性炭喷射脱汞预测模型能较好地预测活性炭的脱汞效率,预测值与实验结果较吻合;利用该预测模型可进行活性炭喷射脱汞过程机理分析.模型参数敏感性分析表明,活性炭浓度、粒径、吸附常数K、停留时间等均对脱汞效率有重要影响.
Abstract:
Experimental study on mercury removal by activated carbon injection into simulated flue gas was carried out. Factors affecting mercury removal efficiency were investigated, including particle size, residence time, and activated carbon feeding rate. A comprehensive predictive model based on material balance equation, mass transfer model and surface isothermal adsorption model is established for predicting mercury removal efficiency by activated carbon injection. Sensitivity analysis of the model parameters is conducted. The experimental results show that increasing the residence time and the feeding rate of activated carbon or reducing the particle size are beneficial to the mercury removal. The simulation results indicate that the model is capable of forecasting the mercury removal efficiency and a good agreement between the calculated curves and the experimental data is obtained as well. So the predictive model can be used to provide assistance in analyzing mechanism for the process of the activated carbon injection. The sensitivity analyses show that the activated carbon feeding rate, particle size, adsorption constant K and residence time have dominant impacts on mercury removal.

参考文献/References:

[1] Xu W Q, Wang H R, Zhu T Y. Mercury removal from coal combustion flue gas by modified fly ash [J]. Journal of Environmental Sciences, 2013, 25(2):393-398.
[2] 任建莉, 周劲松, 骆仲泱, 等. 新型吸附剂脱除烟气中气态汞的实验研究[J].中国电机工程学报, 2007, 27(2):48-53.
  Ren Jianli, Zhou Jinsong, Luo Zhongyang, et al. The application of novel sorbents for mercury vapor removal from simulated flue gases [J]. Proceedings of the CSEE, 2007, 27(2):48-53.(in Chinese)
[3] 杨振宇, 羌宁, 季学李. 美国燃煤电厂锅炉烟气中汞的研究进展[J]. 能源环境保护, 2003, 17(5): 3-7.
  Yang Zhenyu, Qiang Ning, Ji Xueli. Current advances of mercury emissions from coal-fired electric utility boilers in USA [J]. Energy Environmental Protection, 2003, 17(5): 3-7.(in Chinese)
[4] Niksa S, Fujiwara N. Estimating Hg emissions from coal-fired power stations in China [J]. Fuel, 2009, 88(1): 214-217.
[5] Martinez A I, Deshpande B K. Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury [J]. Fuel Process Technology, 2007, 88(10):982-987.
[6] Lee S H, Rhim Y J, Cho S P, et al. Carbon-based novel sorbent for removing gas-phase mercury [J]. Fuel, 2006, 85(2):219-226.
[7] 陶叶. 火电机组烟气脱汞工艺路线选择[J]. 电力建设, 2011, 32(4):74-78.
  Tao Ye. Process route selection of mercury control for coal-fired units [J]. Electric Power Constration, 2011, 32(4):74-78.(in Chinese)
[8] Meserole F B, Chang R, Carey T R, et al. Modeling mercury removal by sorbent injection [J]. Air & Waste Management Association, 1999, 49:694-704.
[9] Zhao B T, Zhang Z X, Jin J, et al. Simulation of mercury capture by sorbent injection using a simplified model [J]. Journal of Hazardous Materials, 2009, 170(2/3):1179-1185.
[10] 任建莉, 周劲松, 骆仲泱, 等. 汞吸附过程的实验研究和数学模型[J].中国电机工程学报, 2006, 26(11):1-6.
  Ren Jianli, Zhou Jinsong, Luo Zhongyang, et al. Fixed-bed experiments and mathematical modeling for adsorption of mercury vapors [J]. Proceedings of the CSEE, 2006, 26(11):1-6.(in Chinese)
[11] Scala F. Simulation of mercury capture by activated carbon injection in incinerator flue gas.1.in-duct removal [J]. Environmental Science and Technology, 2001, 35(21):4367-4372.
[12] Flora J R, Hargis R A, O’Dowd W J, et al. Modeling sorbent injection for mercury control in baghouse filters: Ⅰ-model development and sensitivity analysis [J]. Air and Waste Management Association, 2003, 53(4):478-488.
[13] Serre S D, Gullett B K, Ghorishi S B. Entrained-flow adsorption of mercury using activated carbon[J]. Air and Waste Management Association, 2001, 51(5):733-741.
[14] 胡长兴, 周劲松, 骆仲泱,等. 烟气脱汞过程中活性炭喷射量的影响因素[J]. 化工学报, 2005, 56(11): 2172-2177.
  Hu Changxing, Zhou Jinsong, Luo Zhongyang, et al. Factors affecting amount of activated carbon injection for flue gas mercury control[J]. Journal of Chemical Industry and Engineering, 2005, 56(11): 2172-2177.(in Chinese)
[15] Sjostrom S, Ebner T, Ley T, et al. Assessing sorbents for mercury control in coal-combustion flue gas [J]. Air and Waste Management Association, 2002, 52(8):902-911.
[16] Maroto-Valer M M, Zhang Y Z, Granite E J, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample[J]. Fuel, 2005, 84(1):105-108.
[17] Lee S H, Rhim Y J, Cho S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2):219-226.
[18] Lee S S, Lee J Y, Keener T C. Novel sorbents for mercury emissions control from coal-fired power plant[J].Journal of the Chinese Institute of Chemical Engineers, 2008, 39(2):137-142.
[19] Scala F, Chirone R. In-duct removal of mercury from coal-fired power plant flue gas by activated carbon: assessment of entrained flow versus wall surface contributions [J]. Environmental Engineering Science, 2008, 25(10): 1423-1428.

相似文献/References:

[1]吴海苗,王晓波,归柯庭.以活性炭为载体的负载型催化剂的SCR脱硝性能[J].东南大学学报(自然科学版),2013,43(4):814.[doi:10.3969/j.issn.1001-0505.2013.04.026]
 Wu Haimiao,Wang Xiaobo,Gui Keting.Performance of SCR denitration of impregnated catalysts using activated carbon as support[J].Journal of Southeast University (Natural Science Edition),2013,43(6):814.[doi:10.3969/j.issn.1001-0505.2013.04.026]
[2]汪小蕾,朴桂林,谢浩,等.活性炭选择性催化还原NOx[J].东南大学学报(自然科学版),2011,41(1):145.[doi:10.3969/j.issn.1001-0505.2011.01.028]
 Wang Xiaolei,Piao Guilin,Xie Hao,et al.Selective catalytic reduction of NOx by activated carbon[J].Journal of Southeast University (Natural Science Edition),2011,41(6):145.[doi:10.3969/j.issn.1001-0505.2011.01.028]
[3]王闰林,段钰锋,耿新泽,等.75 t/h CFB燃煤锅炉烟道喷射吸附剂脱汞数值模拟[J].东南大学学报(自然科学版),2020,50(2):342.[doi:10.3969/j.issn.1001-0505.2020.02.019]
 Wang Runlin,Duan Yufeng,Geng Xinze,et al.Numerical simulation on sorbent injection into flue gas for mercury capture in 75 t/h CFB coal-fired boiler[J].Journal of Southeast University (Natural Science Edition),2020,50(6):342.[doi:10.3969/j.issn.1001-0505.2020.02.019]

备注/Memo

备注/Memo:
作者简介: 周强(1988—),男,博士生;段钰锋(联系人),男,博士,教授,博士生导师, yfduan@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51076030,51376046)、江苏省环保科研课题基金资助项目(201113)、江苏省产学研联合创新资金资助项目(BY2013073-10)、煤燃烧国家重点实验室开放基金资助项目(FSKLCC1002).
引文格式: 周强,段钰锋,洪亚光,等.活性炭喷射脱汞实验研究和预测模型[J].东南大学学报:自然科学版,2013,43(6):1258-1263. [doi:10.3969/j.issn.1001-0505.2013.06.024]
更新日期/Last Update: 2013-11-20