[1]王冠军,张元林.维修时间受限的单部件系统几何过程维修模型[J].东南大学学报(自然科学版),2013,43(6):1335-1339.[doi:10.3969/j.issn.1001-0505.2013.06.037]
 Wang Guanjun,Zhang Yuanlin.Geometric process model for a single-unit system with limit repair time[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1335-1339.[doi:10.3969/j.issn.1001-0505.2013.06.037]
点击复制

维修时间受限的单部件系统几何过程维修模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第6期
页码:
1335-1339
栏目:
数学、物理学、力学
出版日期:
2013-11-20

文章信息/Info

Title:
Geometric process model for a single-unit system with limit repair time
作者:
王冠军张元林
东南大学数学系, 南京 210096
Author(s):
Wang Guanjun Zhang Yuanlin
Department of Mathematics, Southeast University, Nanjing 210096, China
关键词:
几何过程维修 更换策略 维修时间限制 极限平均可用度 平均费用率
Keywords:
geometric process repair replacement policy limit repair time limiting average availability average cost rate
分类号:
O212.2
DOI:
10.3969/j.issn.1001-0505.2013.06.037
摘要:
应用几何过程维修理论,研究了一个维修时间受限的单部件系统的最优维修更换策略问题.假定逐次维修后系统工作时间随机递减,逐次维修时间随机递增,分别构成递减和递增的几何过程.系统对维修时间设定一个上限阈值θ,当维修时间超过θ时放弃维修,更换新系统.系统维修N次以后不再维修,下次发生故障时被新系统更换.假定系统工作时间服从一般分布,维修时间服从指数分布,通过分析得到了系统平均可用度、平均故障频度等一些可靠性指标,并给出了系统长期运行平均费用率函数.利用一个数值例子对最优更换策略N*进行了模拟,并分析了维修时间阈值对最优策略的影响.
Abstract:
By applying the geometric process repair theory, the optimal repair replacement policy for a single-unit system with limit repair time is studied. Assume that the operating times of the system after repair decrease stochastically forming a geometric process, while the consecutive repair times constitute an increasing geometric process. An upper threshold θ is set for the repair time. If the repair is not completed in the given limit repair time θ, the repair is stopped and the system is replaced by a new one. If the system is repaired N times, the system will be replaced at the next failure. Assume that the working time follows a general distribution, and the repair time is exponentially distributed. Through some analysis, some reliability indices for the system including the average availability and the average occurrence of failure are obtained. The explicit expression for the long-run average cost rate is also obtained. A numerical example is given to simulate the optimal replacement policy N*, and the influence of the limit repair time on the optimal replacement policy is also discussed.

参考文献/References:

[1] Lam Y. Geometric processes and replacement problem [J]. Acta Mathematica Applicandae Sinica, 1988, 4(4): 366-377.
[2] Lam Y. A note on the optimal replacement problem [J]. Advances in Applied Probability, 1988, 20(2): 479-482.
[3] Zhang Yuanlin. A bivariate optimal replacement policy for a repairable system [J]. Journal of Applied Probability, 1994, 31(4):1123-1127.
[4] 王冠军,张元林.δ_冲击模型及其最优更换策略[J]. 东南大学学报:自然科学版,2001,31(5):121-124.
  Wang Guanjun, Zhang Yuanlin.δ_shock model and the optimal replacement policy [J]. Journal of Southeast University: Natural Science Edition, 2001,31(5):121-124.(in Chinese)
[5] 王冠军,张元林. 一般δ_冲击模型及其最优更换策略[J]. 运筹学学报, 2003, 7(3):75-82.
  Wang Guanjun, Zhang Yuanlin. General δ_shock model and its optimal replacement policy [J].OR Transactions,2003, 7(3):75-82.(in Chinese)
[6] Wang Guanjun, Zhang Yuanlin. A bivariate optimal replacement policy for a cold standby repairable system with preventive repair [J]. Applied Mathematics and Computation, 2011, 218(7):3158-3165.
[7] Zhang Yuanlin, Wang Guanjun. An extended replacement policy for a deteriorating system with multi-failure modes [J]. Applied Mathematics and Computation, 2011, 218(5): 1820-1830.
[8] Wang Guanjun, Zhang Yuanlin. Optimal repair-replacement policies for a system with two types of failures [J]. European Journal of Operational Research, 2013, 226(3): 500-506.
[9] Lam Y. The geometric process and its applications [M]. Singapore: World Scientific, 2007: 37-40.
[10] Nakagawa T, Osaki S. The optimum repair limit replacement policies [J]. Operational Research Quarterly, 1974, 25(2): 311-317.
[11] Wang H. A survey of maintenance policies of deteriorating systems [J]. European Journal of Operational Research, 2002, 139(3):249-489.
[12] Dohi T, Ashioka A. Replacement policy with imperfect repair: Lorenz transform approach [J]. Mathematical and Computer Modelling, 2003, 38(11): 1169-1176.
[13] Ross S M. Stochastic processes [M]. New York: Wiley, 1996:132-140.

相似文献/References:

[1]王冠军,张元林.δ-冲击模型及其最优更换策略[J].东南大学学报(自然科学版),2001,31(5):121.[doi:10.3969/j.issn.1001-0505.2001.05.026]
 Wang Guanjun,Zhang Yuanlin.δ-Shock Model and the Optimal Replacement Policy[J].Journal of Southeast University (Natural Science Edition),2001,31(6):121.[doi:10.3969/j.issn.1001-0505.2001.05.026]

备注/Memo

备注/Memo:
作者简介: 王冠军(1974—),男,博士,副教授,wgjmath@gmail.com.
基金项目: 国家自然科学基金资助项目(11271067)、江苏省自然科学基金资助项目(BK2011598).
引文格式: 王冠军,张元林.维修时间受限的单部件系统几何过程维修模型[J].东南大学学报:自然科学版,2013,43(6):1335-1339. [doi:10.3969/j.issn.1001-0505.2013.06.037]
更新日期/Last Update: 2013-11-20