[1]翁国庆,张森,倪巍伟.一种基于扰动的轨迹数据隐藏发布方法[J].东南大学学报(自然科学版),2014,44(1):51-57.[doi:10.3969/j.issn.1001-0505.2014.01.010]
 Weng Guoqing,Zhang Sen,Ni Weiwei.A perturbation-based privacy preserving trajectory publication method[J].Journal of Southeast University (Natural Science Edition),2014,44(1):51-57.[doi:10.3969/j.issn.1001-0505.2014.01.010]
点击复制

一种基于扰动的轨迹数据隐藏发布方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第1期
页码:
51-57
栏目:
计算机科学与工程
出版日期:
2014-01-18

文章信息/Info

Title:
A perturbation-based privacy preserving trajectory publication method
作者:
翁国庆张森倪巍伟
东南大学计算机科学与工程学院, 南京 211189
Author(s):
Weng Guoqing Zhang Sen Ni Weiwei
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
关键词:
轨迹数据发布 隐私保护 数据扰动
Keywords:
trajectory publication privacy preservation data perturbation
分类号:
TP31
DOI:
10.3969/j.issn.1001-0505.2014.01.010
摘要:
针对轨迹数据发布中的隐私保护和数据可用性问题,结合统计学的概念,提出一种基于扰动的轨迹数据隐藏发布方法.首先定义一种隐私泄露检测机制,当该检测机制发现攻击者依赖所掌握部分轨迹能以较大概率推测出某隐私节点时,基于统计方法,寻找出现频率最低的同类隐私节点,若存在且用其替换有隐私泄露风险的隐私节点后不会出现新的隐私泄露,则执行替换操作;否则在拥有该隐私节点的所有轨迹中,选择最佳的那条轨迹,将该隐私节点移除.这样,就能降低隐私节点的隐私泄露概率,保证发布后的轨迹数据满足用户的隐私需求.理论分析和实验结果表明,所提出的方法能有效避免基于部分轨迹推测剩余隐私节点的攻击,有效保持原有轨迹数据中不同种类节点间连接关系的可用性.
Abstract:
Considering the problems of privacy preserving and data utility in trajectory publication, a perturbation-based privacy preserving trajectory publishing method is proposed from the view of statistics. First, a mechanism of privacy leak detection is devised to identify whether an attacker can use partial trajectories as quasi-identifier to infer the rest privacy-aware trajectory nodes with high probability. When it detects privacy leak, a statistic-based approach is used to find homogeneous privacy-aware nodes of the lowest occurrence frequency, and replace private leak nodes with them, on condition that there is no new privacy disclosure after replacement. Otherwise, the method suppresses the private leak node of appropriate trajectory. In this way, the breach probability could be decreased effectively, and it can be assured that the published trajectory datasets meet the users’ privacy demands. Theoretical analysis and experimental results testify that the proposed method can prevent the attack of inferring sensitive locations by partial trajectory, meanwhile keep the utility of linkage relation among different kinds of nodes in the original trajectory datasets well.

参考文献/References:

[1] Lee G J, Han J W, Li X L. Trajectory outlier detection: a partition-and-detect framework [C]//IEEE International Conference on Data Engineering. Cancun, Mexico, 2008:140-149.
[2] Lee J G, Han J W, Li X L. TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering [C]//International Conference on Very Large Databases. Auckland, New Zealand, 2008:1081-1094.
[3] Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition-and-group framework [C]//SIGMOD International Conference on Management of Data. Beijing, China, 2007:593-604.
[4] Li X L, Han J W, Kim S, et al. Anomaly detection in moving object [M]//Intelligence and Security Informatics. Heidelberg: Springer, , 2008:357-381.
[5] Nanni M, Pedreschi D. Time-focused clustering of trajectories of moving objects [J]. Journal of Intelligent Information Systems, 2006, 27(3): 267-289.
[6] 张莎妮,刘良旭,叶思敏,等. 一种基于局部位置无关的轨迹片段聚类算法[J]. 计算机研究与发展,2012,49(S1):186-189.
  Zhang Shani, Liu Liangxu, Ye Simin, et al. Trajectories cluster based on local position independence [J]. Journal of Computer Research and Development, 2012, 49(S1):186-189.(in Chinese)
[7] 胡立,陈健,沈书毅,等. 基于用户轨迹聚类分析的推荐算法研究[J]. 计算机研究与发展,2012,49(S1):250-256.
  Hu Li, Chen Jian, Shen Shuyi, et al. Recommendation algorithm research based on clustering on users’ trajectories[J]. Journal of Computer Research and Development, 2012, 49(S1):250-256.(in Chinese)
[8] Chow Chi-Yin, Mokbel M F. Trajectory privacy in location-based services and data publication [J].ACM SIGKDD Explorations Newsletter, 2011, 13(1): 19-29.
[9] 霍峥,孟小峰. 轨迹隐私保护技术研究[J]. 计算机学报,2011,34(10):1820-1830.
  Huo Zheng, Meng Xiaofeng. A survey of trajectory privacy-preserving techniques [J]. Chinese Journal of Computers, 2011, 34(10):1820-1830.(in Chinese)
[10] Abul O, Bonchi F, Nanni M. Never walk alone: uncertainty for anonymity in moving objects databases [C]//IEEE International Conference on Data Engineering. Cancun, Mexico, 2008:376-385.
[11] Hoh B, Gruteser M, Xiong H, et al. Achieving guaranteed anonymity in GPS traces via uncertainty-aware path cloaking [J]. IEEE Transactions on Mobile Computing, 2010, 9(8): 1089-10007.
[12] Nergiz M E, Atzori M, Saygin Y. Towards trajectory anonymization: a generalization-based approach [J]. Transactions on Data Privacy, 2009, 2(1): 47-75.
[13] Terrovitis M, Mamoulis N. Privacy preservation in the publication of trajectories [C]//The 9th International Conference on Mobile Data Management. Beijing, China, 2008:65-72.
[14] Sweeney L. K-anonymity: a model for protecting privacy [J]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10(5):557-570.
[15] Machanavajjhala A, Gehrke J, Kifer D, et al. l -diversity: privacy beyond k-anonymity [C]//International Conference on Data Engineering. Atlanta, GA, USA, 2006: 24.
[16] Brinkhoff T. A framework for generating network-based moving objects [J]. GeoInformatica, 2002, 6(2):153-180.

相似文献/References:

[1]胡新平,孙志挥,张柏礼,等.基于敏感元组的隐私数据保护方法[J].东南大学学报(自然科学版),2010,40(5):911.[doi:10.3969/j.issn.1001-0505.2010.05.006]
 Hu Xinping,Sun Zhihui,Zhang Baili,et al.Privacy data preserving method based on sensitive tuples[J].Journal of Southeast University (Natural Science Edition),2010,40(1):911.[doi:10.3969/j.issn.1001-0505.2010.05.006]

备注/Memo

备注/Memo:
收稿日期: 2013-06-24.
作者简介: 翁国庆(1988—),男,硕士生;倪巍伟(联系人),男,博士,副教授,wni@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61003057).
引用本文: 翁国庆,张森,倪巍伟.一种基于扰动的轨迹数据隐藏发布方法[J].东南大学学报:自然科学版,2014,44(1):51-57. [doi:10.3969/j.issn.1001-0505.2014.01.010]
更新日期/Last Update: 2014-01-20