[1]刘晓军,倪中华,杨章群.基于模糊偏好关系的工艺资源评价与选择的多准则群决策方法[J].东南大学学报(自然科学版),2014,44(1):63-69.[doi:10.3969/j.issn.1001-0505.2014.01.012]
 Liu Xiaojun,Ni Zhonghua,Yang Zhangqun.Multi-criteria and multi-experts decision-making method for process resource evaluation and selection based on fuzzy preference relation[J].Journal of Southeast University (Natural Science Edition),2014,44(1):63-69.[doi:10.3969/j.issn.1001-0505.2014.01.012]
点击复制

基于模糊偏好关系的工艺资源评价与选择的多准则群决策方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第1期
页码:
63-69
栏目:
机械工程
出版日期:
2014-01-18

文章信息/Info

Title:
Multi-criteria and multi-experts decision-making method for process resource evaluation and selection based on fuzzy preference relation
作者:
刘晓军倪中华杨章群
东南大学机械工程学院, 南京 211189; 江苏省微纳生物医疗器械设计与制造重点实现验室, 南京 211189
Author(s):
Liu Xiaojun Ni Zhonghua Yang Zhangqun
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
关键词:
工艺资源选择 模糊偏好关系 多准则群决策 定量化 隶属度函数
Keywords:
process resource selection fuzzy preference relations multi-criteria and multi-experts decision making quantitative membership function
分类号:
TH16
DOI:
10.3969/j.issn.1001-0505.2014.01.012
摘要:
以加工操作序列的选择过程为例,提出了基于模糊偏好关系的工艺资源评价与选择的多准则群决策方法.首先将加工效率、加工成本、设备负载、尺寸精度、表面粗糙度、形状精度和位置精度等评判准则分为定性、定量2种模糊偏好类型,实现定性模糊偏好准则的定量化,建立定量模糊偏好准则的隶属度函数.基于此,建立各评判准则的模糊偏好矩阵,并基于C-IOWA算子对多个决策专家的评估结果进行集结,生成一致性模糊偏好矩阵.然后,求出评判矩阵的排序向量,从而实现对备选加工操作序列评价和选择.最后,通过实例验证该方法的有效性.
Abstract:
Taking the selection process of a machining operation sequence for example, the multi-criteria and multi-experts decision-making method for process resource evaluation and selection based on fuzzy preference relations is proposed. The fuzzy preference relations for different assessment criteria, such as processing efficiency, processing costs, equipment load, dimensional accuracy, surface roughness, form accuracy and position accuracy, are divided into quantitative fuzzy preference and qualitative fuzzy preference. The quantitative depiction of qualitative fuzzy preference criteria is given, and the function for quantitative fuzzy preferences criteria membership is established. Based on the C-IOWA, the aggregate method of the fuzzy preference relation matrices for multi-criteria and multi-experts assessment results is studied, which is used to obtain the consistency fuzzy preference matrix. Then, the method for computing the priority weight vector, which is used as the evaluation and selection criteria, is given. Finally, an example is used to verify the validity of the proposed method.

参考文献/References:

[1] Garcia J M T, del Moral M J, Martinez M A, et al. A consensus model for group decision making problems with linguistic interval fuzzy preference relations[J]. Expert Systems with Applications, 2012, 39(11):10022-10030.
[2] Ertay T, Kahveci A, Tabanl R M. An integrated multi-criteria group decision-making approach to efficient supplier selection and clustering using fuzzy preference relations[J]. International Journal of Computer Integrated Manufacturing, 2011, 24(12):1152-1167.
[3] Amindoust A, Ahmeda S, Saghafiniab A, et al. Sustainable supplier selection: a ranking model based on fuzzy inference system[J]. Applied Soft Computing, 2012, 12(6):1668-1677.
[4] Chen Y H, Chao R J. Supplier selection using consistent fuzzy preference relations[J]. Expert Systems with Applications, 2012, 39(3):3233-3240.
[5] Wu D D. Performance evaluation: an integrated method using data envelopment analysis and fuzzy preference relations[J]. European Journal of Operational Research, 2009, 194(1):227-235.
[6] Deb S, Ghosh K, Paul S. A neural network based methodology for machining operations selection in computer-aided process planning for rotationally symmetrical parts[J]. Journal of Intelligent Manufacturing, 2006, 17(5):557-569.
[7] 秦宝荣. 智能CAPP系统的关键技术研究[D]. 南京: 南京航空航天大学机电学院, 2003.
[8] 肖九一, 李双跃, 郭春香. 基于偏好关系的制造工艺资源评价与选择的模糊决策方法[J]. 模糊系统与数学, 2008, 22(5): 95-100.
  Xiao Jiuyi, Li Shuangyue, Guo Chunxiang. The evaluating and selecting of manufacturing process resource based on preference relation[J]. Fuzzy System and Mathematics, 2008, 22(5): 95-100.(in Chinese)
[9] Radwan A. A practical approach to a process planning expert system for manufacturing processes[J]. Journal of Intelligent Manufacturing, 2000, 11(1):75-84.
[10] Jiang Bing, Lau Henry, Chan Felix T S, et al. An automatic process planning system for the quick generation of manufacturing process plans directly from CAD drawings[J]. Journal of Materials Processing Technology, 1999, 87(1/2/3): 97-106.
[11] 杨莉, 李南, 和媛媛. 三角模糊数互补判断矩阵的加性一致性及排序[J]. 系统工程, 2009, 27(3): 89-92.
  Yang Li, Li Nan, He Yuanyuan. Additive consistency and prioritization for triangular fuzzy number complementary judgment matrix[J]. Systems Engineering, 2009, 27(3): 89-92.(in Chinese)
[12] 张细香, 刘建勋, 雷静,等. 模糊互补矩阵的加性一致性阈值仿真[J]. 计算机仿真, 2010, 27(1): 316-318,333.
  Zhang Xixiang, Liu Jianxun, Lei Jing, et al. The approximate threshold of additive consistency index for fuzzy complementary matrix[J]. Computer Simulation, 2010, 27(1): 316-318,333.(in Chinese)
[13] 王雪青, 邴兴国, 李海丽. 基于模糊偏好关系的工程项目方案优选方法研究[J]. 科技进步与对策, 2008, 25(10): 91-93.
[14] 张旭. 决策信息不明确的多目标模糊优化模型与方法[D]. 大连: 大连理工大学机械工程学院, 2009.
[15] 周文坤, 武振业, 刘家诚. 模糊偏好条件下多目标群决策的方法[J]. 西南交通大学学报, 2001, 36(3): 232-234.
  Zhou Wenkun, Wu Zhenye, Liu Jiacheng. Multi-attribute group decision-making method under fuzzy preferences[J]. Journal of Southwest Jiaotong University, 2001, 36(3): 232-234.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2013-06-20.
作者简介: 刘晓军(1980—),男,博士,讲师,liuxiaojun@seu.eud.cn.
基金项目: 某部预研资助项目(513180102,51318010103)、某部预研重点基金资助项目(9140A18010111JW0602)、教育部青年基金资助项目(10YJC880109).
引用本文: 刘晓军,倪中华,杨章群.基于模糊偏好关系的工艺资源评价与选择的多准则群决策方法[J].东南大学学报:自然科学版,2014,44(1):63-69. [doi:10.3969/j.issn.1001-0505.2014.01.012]
更新日期/Last Update: 2014-01-20