[1]曹大富,马钊,葛文杰,等.冻融循环作用后钢筋混凝土柱的偏心受压性能[J].东南大学学报(自然科学版),2014,44(1):188-193.[doi:10.3969/j.issn.1001-0505.2014.01.034]
 Cao Dafu,Ma Zhao,Ge Wenjie,et al.Eccentric compressive behaviors of RC columns after freeze-thaw cycles[J].Journal of Southeast University (Natural Science Edition),2014,44(1):188-193.[doi:10.3969/j.issn.1001-0505.2014.01.034]
点击复制

冻融循环作用后钢筋混凝土柱的偏心受压性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第1期
页码:
188-193
栏目:
土木工程
出版日期:
2014-01-18

文章信息/Info

Title:
Eccentric compressive behaviors of RC columns after freeze-thaw cycles
作者:
曹大富1马钊2葛文杰1袁沈峰1张政1
1扬州大学建筑科学与工程学院, 扬州 225127; 2扬州市江都区规划建筑设计院有限公司, 扬州 225200
Author(s):
Cao Dafu1 Ma Zhao2 Ge Wenjie1 Yuan Shenfeng1 Zhang Zheng1
1College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
2Jiangsu Jiangdu Planning and Architectural Design Institute Co., Ltd., Yangzhou 225200, China
关键词:
冻融循环 钢筋混凝土柱 偏心受压 承载力
Keywords:
freeze-thaw cycle reinforced concrete columns eccentric compression bearing capacity
分类号:
TU375.1
DOI:
10.3969/j.issn.1001-0505.2014.01.034
摘要:
为了研究冻融循环作用对钢筋混凝土柱偏心受压性能的影响,对经历0,75,100,125,150次冻融循环作用后的立方体试块进行了抗压强度试验,并设计制作了30根钢筋混凝土柱,将其经历0,75,100,125,150次冻融循环作用后进行偏心受压静力试验.分析了混凝土相对抗压强度、质量损失率、相对动弹性模量与冻融循环次数的关系,研究了冻融循环次数、轴向力偏心距对钢筋混凝土柱偏心受压性能的影响.研究结果表明,随着冻融循环次数的增加,试验柱的开裂荷载和极限荷载都逐渐减小,极限变形逐渐增大,部分试件由大偏心受压破坏转变为小偏心受压破坏.现行混凝土结构设计规范关于钢筋混凝土偏心受压柱极限承载力的计算理论适用于冻融循环作用后的钢筋混凝土柱.
Abstract:
To investigate the eccentric compressive behaviors of reinforced concrete(RC)columns after freeze-thaw cycles, compressive strength tests of concrete cubes after 0, 75, 100, 125, 150 freeze-thaw cycles were carried out. Then, 30 RC columns were fabricated, and the corresponding static eccentric compressive experiments after 0, 75, 100, 125, 150 freeze-thaw cycles were carried out. The relationships between the relative compressive strength of concrete, mass loss rate, relative dynamic elastic modulus and the number of freeze-thaw cycles were analyzed, respectively. The influences of the number of freeze-thaw cycles and the eccentric distance of axial force on the compressive behaviors of RC columns were studied. The results show that with the increase of the number of freeze-thaw cycles, both the cracking load and the ultimate load of RC columns decrease while the deflection increases gradually. Moreover, large eccentric compression failures of some specimens turn into small eccentric compression failure. The current concrete structure design code about the ultimate load is still suitable for RC columns after freeze-thaw cycles.

参考文献/References:

[1] Alan R, Kathryn C, Jennifer B. Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete [J]. Journal of Cleaner Production, 2011, 19(2/3): 272-277.
[2] Shashank B, Taketo U. Strain-temperature hysteresis in concrete under cyclic freeze-thaw conditions [J]. Cement & Concrete Composites, 2008, 30(5): 374-380.
[3] Chetan H, Halil C, Kejin W. Influences of mixture composition on properties and freeze-thaw resistance of RCC [J]. Construction and Building Materials, 2011, 25(1): 313-319.
[4] Kevern J T, Wang K, Schaefer V R. Effect of coarse aggregate on the freeze-thaw durability of pervious concrete [J]. Journal of Materials in Civil Engineering, 2010, 22(5): 469-475.
[5] 冀晓东,宋玉普.冻融循环后光圆钢筋与混凝土黏结性能退化机理研究[J].建筑结构学报,2011,32(1):70-74.
  Ji Xiaodong, Song Yupu. Mechanism of bond degradation between concrete and plain steel bar after freezing and thawing [J]. Journal of Building Structures, 2011, 32(1): 70-74.(in Chinese)
[6] Pierluigi C, Giulia F, Carlo P. Bond strength of CFRP-concrete elements under freeze-thaw cycles [J]. Composite Structures, 2010, 92(4): 973-983.
[7] Yun Y, Wu Y. Durability of CFRP-concrete joints under freeze-thaw cycling [J]. Cold Regions Science and Technology, 2011, 65(3): 401-412.
[8] Toutanji H A, Balaguru P. Effects of freeze-thaw exposure on performance of concrete columns strengthened with advanced composites [J]. ACI Materials Journal, 1999, 96(5): 605-610.
[9] Green M F, Dent A J S, Bisby L A. Effect of freeze-thaw cycling on the behavior of reinforced concrete beams strengthened in flexure with fiber reinforced polymer sheets [J]. Canadian Journal of Civil Engineering, 2003, 30(6): 1081-1088.
[10] Reis J M L, Ferreira A J M. Freeze-thaw and thermal degradation influence on the fracture properties of carbon and glass fiber reinforced polymer concrete [J]. Construction and Building Materials, 2006, 20(10): 888-892.
[11] 朱江.预应力混凝土梁在冻融循环后的受力性能研究[D].扬州:扬州大学建筑科学与工程学院,2006.
[12] 任慧韬,胡安妮,赵国藩.冻融循环对玻璃纤维布加固混凝土梁受力性能影响[J].土木工程学报,2004,37(4):105-110.
  Ren Huitao, Hu Anni, Zhao Guofan. The influence of freeze-thaw action on behavior of concrete beams strengthened by glass fiber reinforced plastics [J]. China Civil Engineering Journal, 2004, 37(4): 105-110.(in Chinese)
[13] 张娟秀,叶见曙,姚伟发.冻融循环作用下CFRP加固混凝土梁疲劳性能试验研究[J].东南大学学报:自然科学版,2010,40(5):1034-1038.
  Zhang Juanxiu, Ye Jianshu, Yao Weifa. Fatigue behavior of RC beams strengthened with CFRP sheets after freeze-thaw cycling action [J]. Journal of Southeast University: Natural Science Edition, 2010, 40(5): 1034-1038.(in Chinese)
[14] 陈建伟,胡海涛,王希宾,等.玄武岩纤维加固混凝土梁的冻融试验研究[J].青岛理工大学学报,2008,29(3):27-30.
  Chen Jianwei, Hu Haitao, Wang Xibin, et al. Experiment with the Freeze-Thaw of the Concrete Beams Reinforced by BFRP [J]. Journal of Qingdao Technological University, 2008, 29(3): 27-30.(in Chinese)
[15] 刁波,孙洋,叶英华.持续承载钢筋混凝土梁的冻融循环试验 [J].中南大学学报:自然科学版,2011,42(3):785-790.
  Diao Bo, Sun Yang, Ye Yinghua. Experiments of persistent loading reinforced concrete beams with freeze-thaw cycles [J]. Journal of Central South University: Science and Technology, 2011, 42(3): 785-790.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2013-06-08.
作者简介: 曹大富(1964—),男,副教授,dfcao@yzu.edu.cn.
基金项目: 国家自然科学基金资助项目(50978224,51278445,51308490)、住房和城乡建设部科学技术计划资助项目(2013-K4-17)、江苏省自然科学基金资助项目(BK20130450)、江苏省高校自然科学基金资助项目(13KJB560015)、扬州市科技计划资助项目(2012149).
引用本文: 曹大富,马钊,葛文杰,等.冻融循环作用后钢筋混凝土柱的偏心受压性能[J].东南大学学报:自然科学版,2014,44(1):188-193. [doi:10.3969/j.issn.1001-0505.2014.01.034]
更新日期/Last Update: 2014-01-20