[1]周杰,曹志钢,菊池久和.非对称空间统计信道模型及其MIMO多天线系统[J].东南大学学报(自然科学版),2014,44(2):232-238.[doi:10.3969/j.issn.1001-0505.2014.02.002]
 Zhou Jie,Cao Zhigang,Hisakazu Kikuchi.Asymmetric geometrical statistical channel model and MIMO wireless communications[J].Journal of Southeast University (Natural Science Edition),2014,44(2):232-238.[doi:10.3969/j.issn.1001-0505.2014.02.002]
点击复制

非对称空间统计信道模型及其MIMO多天线系统()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
232-238
栏目:
信息与通信工程
出版日期:
2014-03-20

文章信息/Info

Title:
Asymmetric geometrical statistical channel model and MIMO wireless communications
作者:
周杰12曹志钢1菊池久和2
1南京信息工程大学电子与信息工程学院, 南京 210044; 2日本国立新泻大学电气电子工学科, 新泻 950-2181
Author(s):
Zhou Jie12 Cao Zhigang1 Hisakazu Kikuchi2
1College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2Department of Electronic and Electrical Engineering, Niigata University, Niigata 950-2181, Japan
关键词:
非对称空间信道模型 宏小区/微小区 多输入多输出 信道容量 到达角度 到达时间
Keywords:
asymmetric model geometrical channel macrocell/microcell MIMO(multiple-input multiple-output) channel capacity angle of arrival(AOA) time of arrival(TOA)
分类号:
TN911.6
DOI:
10.3969/j.issn.1001-0505.2014.02.002
摘要:
针对在非均匀散射体分布以及非对称空间分布的移动通信环境,引入几何分割法导出基于散射体高斯分布的非对称空间统计信道模型.在指向性天线覆盖下的非对称宏小区和微小区以及街道和室内小区的移动通信环境下,模型能估计多径衰落信道的重要空时信道参数,如信号到达角度(AOA)、到达时间(TOA)概率分布密度函数以及到达信号的空-时相关性.另外,在非对称空间统计信道下设置了MIMO多天线线性阵列(ULA)和圆环阵列(UCA),研究了此衰落信道的信道容量.通过信号的AOA和TOA概率密度函数的数值结果与多径衰落信道圆模型(GBSBM)的数值结果对比,表明本模型的信道参数估计结果符合实际的移动通信环境.假设非均匀散射体分布为高斯分布时,本模型的数值结果阐明了分布参数对信道参数的影响,拓展了空间统计信道模型的研究和应用,对评估MIMO多天线阵列系统空时处理算法和仿真无线通信系统提供了有力的工具.
Abstract:
As for the mobile communication environment with non-uniform scatterers distribution and asymmetric spatial distribution, the asymmetric geometrical statistic channel model based on the Gaussian scatterers distribution was derived. In the communication environments of asymmetric macrocell, microcell and street and indoor cell geometry design covered by directional antenna, the important space-time channel parameters of the multipath fading channel, such as the probability density functions of the angle of arrival(AOA), time of arrival(TOA)and the signal space-time correlation can be estimated by this model. In addition, in the asymmetric spatial statistic channel, we established the Multiple-Input Multiple-Output(MIMO)uniform linear array(ULA)and uniform circular array(UCA)were estimated, and the channel capacity of the fading channel was studied. Comparing the statistic results of the probability density functions of AOA and TOA with those the geometrically based single bounce model(GBSBM), the results show that the channel parameters conform to realistic mobile communication environments. Assuming that the scatterer distribution is the Gaussian distribution, the statistical results of the proposed model illustrate the influence of the distribution parameters on the channel parameters, expanding the study and application of spatial statistic channel models and providing powerful tools for the assessment of the MIMO array system space-time processing algorithm and the simulation of wireless communication systems.

参考文献/References:

[1] Intarapanich A, Kafle P L, Davies R J, et al. Geometrically based broadband MIMO model with tap-gain correlation[J]. IEEE Trans Veh Technol, 2007, 56(6):3631-3641.
[2] Tsalolihin E, Bilik I, Blaunstein N. MIMO capacity in space and time domain for various urban environments[C]//Proceedings of the 5th European Conference on Antennas and Propagation. Rome, Italy, 2011: 2192-2196.
[3] Ivanis Predrag N. Closed-form level crossing rates expressions of orthogonalized correlated MIMO channels[J]. IEEE Trans Veh Technol, 2011, 60(4): 1910-1916.
[4] Buyukcorak S, Karabulut Kurt G. Simulation and measurement of spatial correlation in MIMO systems with ray tracing[C]//5th International Conference on Signal Processing and Communication Systems. Honolulu, HI, USA, 2011: 1-5.
[5] Jakes W. Microwave mobile communications[M]. New York:IEEE Press, 1974: 1-10.
[6] Ertel R B, Reed J H. Angle and time of arrival statistics for circular and elliptical scattering model[J]. IEEE J Sel Areas Commun, 1999, 17(11):1829-1840.
[7] Petrus P, Reed J H, Rappaport T S. Geometrical-based statistical macrocell channel model for mobile environment[J]. IEEE Trans Commun, 2002, 50(3):495-502.
[8] Olenko A Y, Wong K T, Abdulla M. Analytically derived TOA-DOA distributions of uplink/downlink wireless cellular multi-paths arisen from scatteress with an inverted-parabolic spatial distribution around the mobile[J]. IEEE Signal Proc Let, 2005, 12(7):516-519.
[9] Olenko A Y, Wong K T,Ng E H. Analytically derived TOA-DOA statistics of uplink/downlink wireless multi-paths arisen from sactterers on an hollow-disc around the mobile[J]. IEEE Antenn Wirel Pr Lett, 2003, 2(1):345-348.
[10] Jaafar I, Boujemaa H, Siala M. Angle and time of arrival statistics for hollow-disc and elliptical scattering models[C]//Proc of International Conference on Signals, Circuits and Systems. Nabeul, Tunisia, 2008:1-4.
[11] Janaswamy R. Angle and time of arrival statistics for the Gaussian scatter density model[J]. IEEE Trans Wirel Commun, 2002, 1(3):488-497.
[12] Wu Y I, Wong K T. A geometrical model for the TOA distribution of uplink/downlink multi-paths assuming scatterers with a conical spatial density[J]. IEEE Antenn Propag M, 2008, 50(6):196-205.
[13] Kong S H. TOA and AOD statistics for down link Gaussian scatterer distribution model[J]. IEEE Trans Wirel Commun, 2009, 8(5): 2609-2617.
[14] Khan N M, Simsim M T, Ramer R. Modeling spatial aspects of mobile channel for macrocells using Gaussian scattering distribution[C]//The 3rd International Symposium on Wireless Communication Systems. Valencia, Spain, 2006:616-620.
[15] Jiang L, Tan S Y. Simple geometrical-based AOA model for mobile communication systems[J]. Electron Lett, 2004, 40(19):1203-1205.
[16] Jiang L, Tan S Y. Geometrically based power azimuth spectrum models for mobile communication systems[J]. Microwave and Optical Technology Letters, 2007, 49(9):2093-2097.
[17] Jiang L, Tan S Y. Geometrically based statistical channel models for outdoor and indoor propagation environments[J]. IEEE Trans Veh Technol, 2007, 56(6):3587-3593.
[18] Baltzis K B, Sahalos J N. A simple 3D geometric channel model for macrocell mobile communication[J]. Wireless Pers Commun, 2009, 51(2): 329-347.
[19] Baltzis K B. On the geometric modeling of the uplink channel in a cellular system[J]. Journal of Engineering Science and Technology Review, 2008, 1(1):75-82.
[20] Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Pers Commun, 1998, 6(3):311-319.

备注/Memo

备注/Memo:
收稿日期: 2013-09-08.
作者简介: 周杰(1964—),男,教授,博士生导师,zhoujie45@hotmail.com.
基金项目: 国家自然科学基金资助项目(61372128)、科技部公益性行业专项资助项目(GYHY200906053)、教育部留学基金委启动项目资助项目(教外司留20071108)、江苏省科技支撑计划(工业)资助项目(BE2011195)、江苏省高校自然科学科学研究计划资助项目(08KJB510009)、江苏省“六大”高峰人才资助项目(2008-118)、江苏省博士后基金资助项目(2011-11-010986678).
引用本文: 周杰,曹志钢,菊池久和.非对称空间统计信道模型及其MIMO多天线系统[J].东南大学学报:自然科学版,2014,44(2):232-238. [doi:10.3969/j.issn.1001-0505.2014.02.002]
更新日期/Last Update: 2014-03-20