[1]李应林,等.液液引射器性能的数值模拟与实验[J].东南大学学报(自然科学版),2014,44(2):289-294.[doi:10.3969/j.issn.1001-0505.2014.02.012]
 Li Yinlin,Tan Laizhi,et al.Numerical simulation and experimental investigation on performance of liquid-liquid ejector[J].Journal of Southeast University (Natural Science Edition),2014,44(2):289-294.[doi:10.3969/j.issn.1001-0505.2014.02.012]
点击复制

液液引射器性能的数值模拟与实验()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
289-294
栏目:
能源与动力工程
出版日期:
2014-03-20

文章信息/Info

Title:
Numerical simulation and experimental investigation on performance of liquid-liquid ejector
作者:
李应林1 2谭来仔3陈传宝3吴薇2张小松1杜垲1
1东南大学能源与环境学院, 南京 210096; 2南京师范大学能源与机械工程学院, 南京 210042; 3南京五洲制冷集团有限公司, 南京 211100
Author(s):
Li Yinlin1 2 Tan Laizhi3 Chen Chuanbao3 Wu Wei2 Zhang Xiaosong1 Du Kai1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Energy and Mechanics, Nanjing Normal University, Nanjing 210042, China
3Nanjing Wu-Zhou Refrigeration Group Co. Ltd., Nanjin
关键词:
引射器 引射系数 水平管降膜 循环喷淋量
Keywords:
ejector entrainment ratio horizontal-tube falling film circular spraying flow rate
分类号:
TK123
DOI:
10.3969/j.issn.1001-0505.2014.02.012
摘要:
建立了液液引射器的三维数学模型,采用R134a制冷剂作为工质,模拟引射器主要结构参数与引射性能之间的变化关系.模拟结果表明:引射系数随喷嘴出口直径的减小而急剧增大,随混合室直径的增大而增大,随喷嘴与混合室之间距离的增大急剧下降;引射系数随着工作流体流量、喷嘴长度和扩散室长度的增大而缓慢上升;混合室长度对混合流体的压力场有较大影响,为使混合流体获得最佳的压力场,混合室最佳长度取45 mm.搭建了水平管降膜式空气源冷热水测试机组,试验结果表明:该引射器具有优良的引射性能;制冷系统负荷随着循环喷淋量的增加而增大,系统的性能系数随着循环喷淋量的增大呈现先增后减的趋势.
Abstract:
A three-dimensional model of the ejector is proposed. And then the relations of main structural parameters with the jet performance of the ejector are simulated by using refrigerant R134a as the working fluid. Simulation results indicate that the entrainment ratio increases sharply with the decrease of the nozzle exit diameter, increases gradually with the increase of the mixing section diameter, and descends quickly with the increase of the distance between the nozzle exit and the mixing section inlet. And the entrainment ratio ascends slightly with the increase of the working fluid flow rate, nozzle length and diffuser length. Moreover, the mixing section length has a strong influence on the pressure of the mixed fluid. To obtain the optimal pressure field of the mixing fluid, the optimum length of the mixing section is 45 mm. Finally, an air-source falling-film heat pump unit is established, and the experimental results show that the performance of the ejector is remarkable. And that the cooling load increases gradually with the increase of the circular spraying flow rate, moreover, the performance coefficient increases first, and then decreases with the increment of the circular spraying flow rate.

参考文献/References:

[1] He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors [J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 1760-1780.
[2] Chen X J, Omer S, Worall M,et al. Recent developments in ejector refrigeration technologies [J]. Renewable and Sustainable Energy Reviews, 2013, 19: 629-651.
[3] Abdulateef J M, Sopian K, Alghoul M A, et al. Review on solar-driven ejector refrigeration technologies [J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1338-1349.
[4] Dahmani A, Aidoun Z, Galanis N. Optimum design of ejector refrigeration systems with environmentally benign fluids [J]. International Journal of Thermal Sciences, 2011, 50(8): 1562-1572.
[5] Zhu Y, Li Y. Novel ejector model for performance evaluation on both dry and wet vapors ejectors [J]. International Journal of Refrigeration, 2009, 32(1): 21-31.
[6] Bergander M J, Butrymowics D, Smierciew K, et al. Refrigeration cycle with ejector for second step compression [C]//International Refrigeration and Air Conditioning Conference. West Lafayette, IN, USA, 2010:2211-1-2211-8.
[7] Chen X, Zhou Y, Yu J. A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application [J]. Energy and Buildings, 2011, 43(12): 3331-3336.
[8] Sumeru K, Nasution H, Ani F N. A review on two phase ejector as an expansion device in vapor compression refrigeration cycle [J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4927-4937.
[9] Bilir N, Ersoy H K. Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector [J]. International Journal of Energy Research, 2009, 33(5): 469-480.
[10] Sarkar J. Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants [J]. International Journal of Energy Research, 2010, 34(1): 84-94.
[11] Dopazo J A, Seara J F. Experimental evaluation of an ejector as liquid re-circulator in an overfeed NH3 system with a plate evaporator [J]. International Journal of Refrigeration, 2011, 34(7): 1676-1683.
[12] Yang L, Wang W. The heat transfer performance of horizontal tube bundles in large falling film evaporators [J]. International Journal of Refrigeration, 2011, 34(1): 303-316.

相似文献/References:

[1]李应林,周飞,张小松,等.制冷剂两相流音速对引射器喷嘴结构的影响[J].东南大学学报(自然科学版),2015,45(1):91.[doi:10.3969/j.issn.1001-0505.2015.01.017]
 Li Yinglin,Zhou Fei,Zhang Xiaosong,et al.Effect of sonic velocity of two-phase refrigerant fluid on structure of ejector nozzle[J].Journal of Southeast University (Natural Science Edition),2015,45(2):91.[doi:10.3969/j.issn.1001-0505.2015.01.017]

备注/Memo

备注/Memo:
收稿日期: 2013-07-30.
作者简介: 李应林(1979—),男,博士,副教授, ylli@njnu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2011BAJ03B05-03)、中国博士后基金面上资助项目(2012M520970).
引用本文: 李应林,谭来仔,陈传宝,等.液液引射器性能的数值模拟与实验[J].东南大学学报:自然科学版,2014,44(2):289-294. [doi:10.3969/j.issn.1001-0505.2014.02.012]
更新日期/Last Update: 2014-03-20