[1]贺志启,刘钊.小剪跨比RC梁受剪分析的优化拉压杆模型[J].东南大学学报(自然科学版),2014,44(2):345-349.[doi:10.3969/j.issn.1001-0505.2014.02.021]
 He Zhiqi,Liu Zhao.Optimal strut-and-tie model for shear analysis of RC deep beams[J].Journal of Southeast University (Natural Science Edition),2014,44(2):345-349.[doi:10.3969/j.issn.1001-0505.2014.02.021]
点击复制

小剪跨比RC梁受剪分析的优化拉压杆模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
345-349
栏目:
交通运输工程
出版日期:
2014-03-20

文章信息/Info

Title:
Optimal strut-and-tie model for shear analysis of RC deep beams
作者:
贺志启刘钊
东南大学土木工程学院, 南京210096
Author(s):
He Zhiqi Liu Zhao
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
D区 深梁 抗剪承载力 拉压杆模型 能量法
Keywords:
D-region deep beam shear strength strut-and-tie model energy method
分类号:
U378.1
DOI:
10.3969/j.issn.1001-0505.2014.02.021
摘要:
基于多层次最小应变能分析,提出了确定混凝土结构D区拉压杆模型构形的一种优化方法.该方法首先借助结构拓扑优化分析拟定拉压杆模型的基本构形,并利用最小应变能参数分析确定模型的最优构形几何参数.针对小剪跨比钢筋混凝土梁,利用多层次的最小应变能分析,推导得到了其受剪分析的最优参数化拉压杆模型.研究发现:当梁的剪跨比小于1时,最优模型为“直接压杆模型”;当梁的剪跨比在1.0~2.0之间时,最优模型为“带斜拉杆的桁架模型”.依据该优化拉压杆模型,并以混凝土斜向拉杆断裂作为梁体劈裂破坏的条件,进一步推导得到了无腹筋小剪跨比梁的抗剪承载力简化计算公式.最后,通过与既有试验结果对比,表明该公式能够较好地反映剪跨比对抗剪承载力的影响.
Abstract:
By means of multi-level analysis toward minimum strain-energy, an optimal approach for configuring strut-and-tie models in disturbed regions(D-regions)of concrete structures is proposed. First, a topology optimization analysis is used to determine the basic configuration, and then the optimal geometric parameters of the model is determined using the principal of minimum strain-energy. Employing the proposed approach, optimal strut-and-tie models are obtained for the shear analysis of RC(reinforced concrete)beams with small shear span-depth ratios. It is observed that in very deep beams(λ of approximately 1.0 or less), a single direct strut between the load point and the reaction is preferred for resisting loads; while in deep beams with λ between 1.0 and 2.0, a truss model with diagonal ties is the optimal load-carrying mechanism. Based on the optimal strut-and-tie models, a simplified equation for shear strength is derived for RC deep beams without web reinforcement, considering that the beams will approach shear failure when the diagonal ties fail in tension. Experimental verification shows that the proposed equation can properly reflect the influence of the shear span-depth ratio on the shear strength.

参考文献/References:

[1] Fenwick R, Paulay T. Mechanisms of shear resistance of concrete beams [J]. Journal of Structural Engineering, ASCE, 1968, 94(10): 2325-2350.
[2] Mihaylov B, Bentz E, Collins M. Behavior of large deep beams subjected to monotonic and reversed cyclic shear [J]. ACI Structural Journal, 2010, 107(6): 726-734.
[3] 刘立新.钢筋混凝土深梁、短梁和浅梁受剪承载力的统一计算方法[J]. 建筑结构学报, 1995(4): 13-21.
  Liu Lixin. An unified calculation method for shear capacity of RC deep beams, short beams and shallow beams [J]. Journal of Building Structures, 1995(4): 13-21.(in Chinese)
[4] Schlaich J, Schäfer K, Jennewein M. Toward a consistent design of structural concrete [J]. Journal of the Prestressed Concrete Institute, 1987, 32(3): 74-150.
[5] Matamoros A, Wong K. Design of simply supported deep beams using strut-and-tie models [J]. ACI Structural Journal, 2003, 100(6): 704-712.
[6] Yang K, Ashour A. Strut-and-tie model based on crack band theory for deep beams [J]. Journal of Structural Engineering, ASCE, 2011, 137(10): 1030-1038.
[7] Kim B, Yun Y. An indeterminate strut-tie model and load distribution ratio for RC deep beams(Ⅰ)model & load distribution ratio [J]. Advances in Structural Engineering, 2011, 14(6): 1031-1041.
[8] He Z, Liu Z, Ma Z. Investigation of load transfer mechanisms in deep beams and corbels [J]. ACI Structural Journal, 2012, 109(4): 467-476.
[9] Liang Q, Xie Y, Steven G. Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure [J]. ACI Structural Journal, 2000, 97(2): 322-332.
[10] Al-Nahlawi K, Wight J. Beam analysis using concrete tensile strength in truss models [J]. ACI Structural Journal, 1992, 89(3): 284-290.
[11] 熊进刚, 付国平. 钢筋混凝土无腹筋短梁受剪承载力计算的软化桁架模型[J]. 南昌大学学报: 工科版, 2004, 26(1): 49-53.
  Xiong Jingang, Fu Guoping. Softened truss model for calculation of shear capacity of reinforced concrete short beams without web reinforcement [J]. Journal of Nanchang University: Engineering & Technology, 2004, 26(1): 49-53.(in Chinese)
[12] 中华人民共和国住房和城乡建设部. GB 50010—2010混凝土结构设计规范[S].北京: 中国建筑工业出版社,2010.

相似文献/References:

[1]丁大钧.结构机理学[J].东南大学学报(自然科学版),1992,22(3):9.[doi:10.3969/j.issn.1001-0505.1992.03.002]
 Ding Dajun.Science of Structural Mechanism[J].Journal of Southeast University (Natural Science Edition),1992,22(2):9.[doi:10.3969/j.issn.1001-0505.1992.03.002]
[2]朱暾,丁大钧.三跨连续深梁的试验研究[J].东南大学学报(自然科学版),1988,18(1):30.[doi:10.3969/j.issn.1001-0505.1988.01.004]
 Zhu Tun Ding Dajun (Department of Civil Engineering).A Test Study of Three-Span Continuous Deep Beams[J].Journal of Southeast University (Natural Science Edition),1988,18(2):30.[doi:10.3969/j.issn.1001-0505.1988.01.004]

备注/Memo

备注/Memo:
收稿日期: 2013-07-21.
作者简介: 贺志启(1982—),男,博士,讲师;刘钊(联系人),男,博士,教授,mr.liuzhao@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51278120).
引用本文: 贺志启,刘钊.小剪跨比RC梁受剪分析的优化拉压杆模型[J].东南大学学报:自然科学版,2014,44(2):345-349. [doi:10.3969/j.issn.1001-0505.2014.02.021]
更新日期/Last Update: 2014-03-20