[1]钟儒勉,宗周红,秦中远,等.基于多尺度模型修正的结合梁斜拉桥损伤识别方法[J].东南大学学报(自然科学版),2014,44(2):350-356.[doi:10.3969/j.issn.1001-0505.2014.02.022]
 Zhong Rumian,Zong Zhouhong,Qin Zhongyuan,et al.Damage identification method of composite cable-stayed bridge based on multi-scale model updating[J].Journal of Southeast University (Natural Science Edition),2014,44(2):350-356.[doi:10.3969/j.issn.1001-0505.2014.02.022]
点击复制

基于多尺度模型修正的结合梁斜拉桥损伤识别方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
350-356
栏目:
交通运输工程
出版日期:
2014-03-20

文章信息/Info

Title:
Damage identification method of composite cable-stayed bridge based on multi-scale model updating
作者:
钟儒勉宗周红秦中远郑沛娟
东南大学土木工程学院, 南京 210096
Author(s):
Zhong Rumian Zong Zhouhong Qin Zhongyuan Zheng Peijuan
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
损伤识别 两阶段响应面方法 多尺度模型修正 模态曲率 模态应变能
Keywords:
damage identification two-stage response surface method multi-scale model updating modal curvature modal strain energy
分类号:
U443.22;TU375.3
DOI:
10.3969/j.issn.1001-0505.2014.02.022
摘要:
以灌河大桥为工程背景,提出了基于多尺度有限元模型修正的结合梁斜拉桥损伤识别方法.首先基于现场环境振动试验结果和两阶段响应面方法对初始多尺度模型进行修正,并将修正后模型定为原始未损伤状态;进而,利用多尺度模型修正方法对结构不同部位不同程度的损伤进行识别,并探讨了模态曲率损伤指标和单元模态应变能损伤指标对不同结构尺度损伤的敏感性.分析结果表明:在不考虑噪声干扰情况下,模态曲率和单元模态应变能指标对精细小尺度单元区域主梁微小(1%)损伤均较为敏感,可识别出结构的损伤位置,而对大尺度单元区域的损伤敏感性略低;在考虑噪声干扰情况下,精细小尺度单元区域比大尺度单元区域在损伤识别方面的抗噪性更好,且模态应变能损伤指标的抗噪性略优于模态曲率损伤指标.故而提出的多尺度建模及其损伤识别方法具有应用到实际工程中微损伤识别的潜力,并为大跨结构损伤预后奠定了基础.
Abstract:
The damage identification method based on a multi-scale finite element(FE)model updating for a composite cable-stayed bridge is presented with respect to the Guanhe Bridge. First, based on ambient vibration testing and the two-stage response surface method, the FE model updating is conducted, and the updated model is chosen as the undamaged state. Secondly, a multi-scale FE model updating method is used to diagnose the structural damage at different positions and in different degrees, and the sensitivity of damage indices including model curvature index(MCI)and modal strain energy index(MSEI)on different structure scale units is discussed. The analysis results show that without considering noise effects, the MCI and MSEI are sensitive to minimal damage(1%)of small scale units, and the locations of cracking damages can be identified, but they are insensitive to the big scale units; considering noise effects, the anti-noise ability of the small scale units is better than that of the big scale units in the damage identification, and the anti-noise ability of MSEI is superior to that of the MCI. The results support the idea that the proposed damage identification method based on the multi-scale finite element model updating has great potential in the damage identification of practical engineering structures, and it lays a solid foundation for the damage prognosis(DP)of large span structures.

参考文献/References:

[1] Barenblatt G I. Micromechanics of fracture[C]//Theoretical and Applied Mechanics. Amsterdam: Elsevier Science Publishers, 1992: 25-52.
[2] Bazant Z P, Chen E P. Scaling of structural failure [J]. Appl Mech Rev, 1997, 50(10): 593-627.
[3] Glimm J, Sharp D H. Multiscale science: a challenge for the twenty-first century [J]. Advances in Mechanics, 1998, 28(4): 545-551.
[4] 白以龙.工程结构损伤的两个重要科学问题——分布式损伤和尺度效应[J].华南理工大学学报,2002,30(11):11-14.
  Bai Yilong. Two important scientific problems in engineering structures—distributed damages and scale effect [J]. Journal of South China University of Technology: Natural Science Edition, 2002, 30(11): 11-14.(in Chinese)
[5] Li Z X, Zhou T Q, Chan T H T, et al. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges [J]. Engineering Structures, 2007, 29(7):1507-1524.
[6] Li Z X, Jiang F F, Tang Y Q. Multi-scale analyses on seismic damage and progressive failure of steel structures [J]. Finite Elements in Analysis and Design, 2012, 48(1): 1358-1369.
[7] Ladeveze P, Nouy A. On a multiscale computational strategy with time and space homogenization for structural mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28/29/30): 3061-3087.
[8] Takizawa K, Tezduyar T E. Multiscale space-time fluid-structure interaction techniques [J]. Computational Mechanics, 2011, 48(3): 247-267.
[9] Liu W K, Dong Q, Stefano G, et al. Multiscale methods for mechanical science of complex materials: bridging from quantum to stochastic multi-resolution continuum[J]. International Journal for Numerical Methods in Engineering, 2010, 83(8/9): 1039-1080.
[10] 宗周红,牛杰,王浩.基于模型确认的结构概率损伤识别方法研究进展[J].土木工程学报,2012,45(8):121-130.
  Zong Zhouhong, Niu Jie, Wang Hao. A review of structural damage identification methods based on the finite element model validation [J]. China Civil Engineering Journal, 2012, 45(8): 121-130.(in Chinese)
[11] Marwala T. Finite-element-model updating using computational intelligence techniques—applications to structural dynamic [M]. London: Springer, 2010: 1-15.
[12] Oberkampf W L, Roy C J. Verification and validation in scientific computation[M]. London: Cambridge University Press, 2010: 1-19.
[13] Adams R D, Cawley P, Pye C J, et al. Vibration technique for non-destructively assessing integrity of structures [J]. Journal of Mechanical Engineering Science, 1978, 20(2): 93-100.
[14] Dong C, Zhang P Q, Feng W Q, et al. The sensitivity study of the modal parameters of a cracked beam[C]//Proceedings of the 12th International Modal Analysis Conference. Hawaii, USA, 1994: 98-104.
[15] Lim T W. Structural damage detection using modal test data [J]. AIAA Journal, 1991, 29(12): 2271-2274.
[16] Fang S E, Perera R. Damage identification by response surface based model updating using D-optimal design [J]. Mechanical Systems and Signal Processing, 2011, 25(2): 17-33.
[17] Zimmerman D C, Kaouk M. Structural damage detection using a minimum rank updates theory [J]. Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116(2): 222-231.
[18] Ren W X, Fang S E, Deng M Y. Response surface-based finite-element-model updating using structural static responses[J]. Journal of Engineering Mechanics, 2011, 137(4): 248-257.
[19] Gangone M V, Whelan M J, Janoyan K D. Wireless monitoring of a multi-span bridge super structure for diagnostic load testing and system identification[J]. Computer-Aided Civil and Infrastructure Engineering, 2011, 26(7): 569-579.
[20] Elkordy M F, Chang K C, Lee G C. Application of neural networks in vibration signature analysis[J]. Journal of Engineering Mechanics, 1994, 120(2): 250-265.
[21] 钟儒勉,樊星辰, 黄学漾,等.基于两阶段响应面方法的结合梁斜拉桥多尺度有限元模型修正[J].东南大学学报:自然科学版,2013, 43(5): 993-999.
  Zhong Rumian,Fan Xingchen, Huang Xueyang, et al. Multi-scale finite element model updating of composite cable-stayed bridge based on the two-phase response surface methods [J]. Journal of Southeast University: Natural Science Edition, 2013, 43(5): 993-999.(in Chinese)
[22] 丁幼亮,李爱群,缪长青.大跨斜拉桥扁平钢箱梁的多尺度损伤分析研究[J].工程力学,2009,11(6):60-66.
  Ding Youliang, Li Aiqun, Miao Changqing. Multi-scale damage analysis for steel box girder of long-span cable-stayed bridges [J]. Engineering Mechanics, 2009, 11(6): 60-66.(in Chinese)
[23] 宗周红,褚福鹏,牛杰.基于响应面模型修正的桥梁结构损伤识别方法[J].土木工程学报,2013,46(2):115-122.
  Zong Zhouhong, Chu Fupeng, Niu Jie. Damage identification methods of bridge structures using response surface based on finite element model updating [J]. China Civil Engineering Journal, 2013, 46(2):115-122.(in Chinese)
[24] 宗周红, 任伟新. 桥梁有限元模型修正与模型确认[M]. 北京:人民交通出版社, 2012: 135-168.

相似文献/References:

[1]王莹,李兆霞,钱方.结构连接刚度损伤的识别方法[J].东南大学学报(自然科学版),2011,41(4):829.[doi:10.3969/j.issn.1001-0505.2011.04.033]
 Wang Yin,Li Zhaoxia,Qian Fang.Identification of damage in connecting stiffness of steel structures[J].Journal of Southeast University (Natural Science Edition),2011,41(2):829.[doi:10.3969/j.issn.1001-0505.2011.04.033]

备注/Memo

备注/Memo:
收稿日期: 2013-07-21.
作者简介: 钟儒勉(1989—),男,博士生;宗周红(联系人),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178101,51378112)、“十二五”国家科技支撑计划资助项目(2011BAK02B03).
引用本文: 钟儒勉,宗周红,秦中远,等.基于多尺度模型修正的结合梁斜拉桥损伤识别方法[J].东南大学学报:自然科学版,2014,44(2):350-356. [doi:10.3969/j.issn.1001-0505.2014.02.022]
更新日期/Last Update: 2014-03-20