[1]董春娇,邵春福,周雪梅,等.基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法[J].东南大学学报(自然科学版),2014,44(2):413-419.[doi:10.3969/j.issn.1001-0505.2014.02.033]
 Dong Chunjiao,Shao Chunfu,Zhou Xuemei,et al.Kalman filter algorithm for short-term jam traffic prediction based on traffic parameter correlation[J].Journal of Southeast University (Natural Science Edition),2014,44(2):413-419.[doi:10.3969/j.issn.1001-0505.2014.02.033]
点击复制

基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
413-419
栏目:
交通运输工程
出版日期:
2014-03-20

文章信息/Info

Title:
Kalman filter algorithm for short-term jam traffic prediction based on traffic parameter correlation
作者:
董春娇1邵春福2周雪梅3孟梦2诸葛承祥2
1田纳西大学交通研究中心, 田纳西37996, 美国; 2北京交通大学城市交通复杂系统理论与技术教育部重点实验室, 北京 100044; 3同济大学教育部道路与交通工程重点实验室, 上海 210804
Author(s):
Dong Chunjiao1 Shao Chunfu2 Zhou Xuemei3 Meng Meng2 Zhuge Chengxiang2
1Center for Transportation Research, The University of Tennessee, Knoxville, TN 37996, USA
2MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
关键词:
交通流短时预测 阻塞流状态 状态空间模型 卡尔曼滤波
Keywords:
short-term traffic flow prediction jam traffic state-space model Kalman filter
分类号:
U491.1
DOI:
10.3969/j.issn.1001-0505.2014.02.033
摘要:
提出一种考虑交通流参数相关关系的卡尔曼滤波算法,实现阻塞流状态下道路网交通流短时预测.在交通流守恒方程的基础上,借鉴偏微分方程求解Lax-Wendroff格式离散的思想,结合阻塞流状态下交通流时间和空间特性及进出口匝道等因素的影响,建立阻塞流状态下交通流短时预测状态空间模型,并设计基于卡尔曼滤波方法的模型求解算法.最后以北京市某一区域路网为例,进行了实证性研究.研究结果表明:所建立的阻塞流状态下交通流短时预测卡尔曼滤波算法由于同时考虑了时间和空间因素,能够使预测平均绝对百分比误差(MAPE)控制在10%以内;平均MAPE仅为7.96%.相同条件下,ARIMA模型和Elman模型预测MAPE分别为19.88%和10.51%.
Abstract:
A Kalman filter model considering the correlation property of traffic flow parameters is proposed to realize network short-term traffic flow prediction under jam traffic. The proposed state-space model of short-term traffic flow prediction is presented by solving the conservation equation using Lax-Wendroff scheme. In addition, the spatial-temporal characteristics of the traffic flow on urban expressway networks and the influence factors of on and off ramp are taken into account for flow rate prediction. The estimation algorithm of the proposed state-space model is designed based on the Kalman filter method. A region expressway network in Beijing is taken as an example to evaluate the performance of the proposed method. The results show that the maximum prediction mean absolute percentage error(MAPE)of the proposed Kalman filter model is less than 10% since the input of the Kalman filter model considers the impacts of spatial-temporal characteristics, and the mean of prediction MAPE is 7.96%. For the same predicted conditions, the mean prediction MAPEs of ARIMA and Elman model are 19.88% and 10.51%, respectively.

参考文献/References:

[1] Clark S. Traffic prediction using multivariate nonparametric regression[J]. Journal of Transportation Engineering, 2003, 129(2): 161-168.
[2] Williams B, Hoel L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[3] Wang Y, Papageorgiou M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach[J]. Transportation Research Part B, 2005, 39(2): 141-167.
[4] 王建, 邓卫, 赵金宝. 基于改进型贝叶斯组合模型的短时交通流量预测[J]. 东南大学学报:自然科学版, 2012, 42(1): 162-167.
  Wang Jian, Deng Wei, Zhao Jinbao. Short-term freeway traffic flow prediction based on improved Bayesian combined model[J]. Journal of Southeast University: Natural Science Edition, 2012, 42(1): 162-167.(in Chinese)
[5] Smith B L, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303-321.
[6] 张晓利, 贺国光, 陆化普. 基于K-邻域非参数回归短时交通流预测方法[J]. 系统工程学报, 2009, 24(2): 178-183.
  Zhang Xiaoli, He Guoguang, Lu Huapu. Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regression[J]. Journal of Systems Engineering, 2009, 24(2): 178-183.(in Chinese)
[7] 董春娇, 邵春福, 李娟, 等. 基于混沌分析的道路网交通流短时预测[J]. 系统工程学报, 2011, 26(3): 340-345.
  Dong Chunjiao, Shao Chunfu, Li Juan, et al. Short-term traffic flow prediction of road network based on chaos theory[J].Journal of Systems Engineering, 2011, 26(3): 340-345.(in Chinese)
[8] 唐铁桥, 黄海军. 用燕尾突变理论来讨论交通流预测[J]. 数学研究, 2005, 38(1):112-116.
  Tang Tieqiao, Huang Haijun. The discussion of traffic flow forecast by using swallowtail catastrophe theory[J]. Journal of Mathematical Study, 2005, 38(1): 112-116.(in Chinese)
[9] 姚智胜, 邵春福, 熊志华. 基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J]. 中国管理科学, 2007, 15(1): 64-68.
  Yao Zhisheng, Shao Chunfu, Xiong Zhihua. Research on short-term traffic flow combined forecasting based on wavelet package and least square support vector machines[J]. Chinese Journal of Management Science, 2007, 15(1): 64-68.(in Chinese)
[10] Castro-Neto M, Jeong Y, Jeong M, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3): 6164-6173.
[11] 董春娇, 邵春福, 熊志华, 等. 基于Elman神经网络的道路网短时交通流预测方法[J]. 交通运输系统工程与信息, 2010, 10(1): 145-151.
  Dong Chunjiao, Shao Chunfu, Xiong Zhihua, et al. Short-term traffic flow forecasting of road network based on Elman neural network[J]. Journal of Transportation System Engineering and Information Technology, 2010, 10(1): 145-151.(in Chinese)
[12] Wahle J, Neubert L, Esser J, et al. A cellular automaton traffic flow model for online simulation of traffic[J]. Parallel Computing, 2001, 27(5): 719-735.
[13] May A D. Traffic flow fundamentals[M]. New Jersey: Prentice Hall, 1990: 119-203.
[14] Martin Treiber, Arne Kesting, Dirk Helbing. Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts[J]. Transportation Research Part B, 2010, 44(8/9): 983-1000.

备注/Memo

备注/Memo:
收稿日期: 2013-08-07.
作者简介: 董春娇(1982—),女,博士,助理研究员;邵春福(联系人),男,博士,教授,博士生导师,cfshao@bjtu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178032).
引文格式: 董春娇,邵春福,周雪梅,等.基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法[J].东南大学学报:自然科学版,2014,44(2):413-419. [doi:10.3969/j.issn.1001-0505.2014.02.033]
更新日期/Last Update: 2014-03-20