[1]陈一梅,李少斌,金彬彬.基于预防性成组维修的人字门船闸大修周期[J].东南大学学报(自然科学版),2014,44(2):436-440.[doi:10.3969/j.issn.1001-0505.2014.02.037]
 Chen Yimei,Li Shaobin,Jin Binbin.Determination of cycle of mitering lock overhaul based on preventive group maintenance strategy[J].Journal of Southeast University (Natural Science Edition),2014,44(2):436-440.[doi:10.3969/j.issn.1001-0505.2014.02.037]
点击复制

基于预防性成组维修的人字门船闸大修周期()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
436-440
栏目:
桥梁、隧道与岩土工程
出版日期:
2014-03-20

文章信息/Info

Title:
Determination of cycle of mitering lock overhaul based on preventive group maintenance strategy
作者:
陈一梅李少斌金彬彬
东南大学交通学院, 南京 210096
Author(s):
Chen Yimei Li Shaobin Jin Binbin
School of Transportations, Southeast University, Nanjing 210096, China
关键词:
人字门船闸 控制部件 成组维修 维修间隔期 大修周期
Keywords:
mitering lock control unit group maintenance maintenance intervals overhaul cycle
分类号:
U641.8
DOI:
10.3969/j.issn.1001-0505.2014.02.037
摘要:
基于系统维修策略理论,对人字门船闸系统成组维修部件构成进行分析,确定了以影响人字门船闸大修决策的底枢、顶枢、阀门和支承件4个控制部件为成组维修系统.从多部件维修的可靠性和经济性出发,以可靠度要求为约束,以系统年平均总费用最小为目标,建立了人字门船闸系统大修周期优化模型.通过调查分析苏北航务管理处所辖16个人字门船闸的维修记录,确定了大修周期优化模型中的成组维修费用,应用可靠性理论确定了控制部件底枢、顶枢、阀门和支承件的维修间隔期分别为14,6,3,14年.研究结果表明,在目前船闸维护技术水平下,苏北处人字门船闸最优大修周期为14年左右,与底枢和支承件的维修间隔期相近.敏感性分析所得敏感度系数在0.02~0.12之间,表明所建立的模型具有很好的稳定性,可供工程实践参考.
Abstract:
Based on the system maintenance strategy theory, the group maintenance components of the mitering lock system are analyzed. A group maintenance system is put forward, which contains four control units such as bottom pivot, top pivot, valves and supporting, affecting mitering lock overhaul decision. From the perspective of reliability and economical of the multi-unit maintenance and taking reliability as constraint, the optimal model for the cycle of mitering lock is established to minimize the system annual average cost. The maintenance data of 16 mitering locks on the Grand Canal at the northern of Jiangsu are investigated in this study to determine the group maintenance cost of the model, thus establishing the lifetime distribution of the control unit with the application of the reliability theory. Further more, the maintenance intervals of bottom pivot, top pivot, valves and supporting are determined to be 14, 6, 3 and 14 years, respectively. The results show that the optimal overhaul cycle and the maintenance intervals of maintenance group which contains bottom pivot and supporting are close, and with existing maintenance technology, the optimum overhaul cycle of mitering lock at the northern of Jiangsu is about 14 years. Finally, according to the sensitivity analysis,the sensitivity coefficients are between 0.02 and 0.12, which shows that the model is stable and it can be reference for engineering practice.

参考文献/References:

[1] 陈一梅,马丽佳,王建民.船闸底枢可靠性模型及其应用[J].东南大学学报:自然科学版,2011,41(1):205-209.
  Chen Yimei, Ma Lijia, Wang Jianmin. Reliability model of lock bottom assembly and its application[J]. Journal of Southeast University: Natural Science Edition, 2011, 41(1):205-209.(in Chinese)
[2] 马丽佳,陈一梅. 一种基于经济寿命理论的船闸大修周期确定方法[J]. 水运工程,2010(3):121-125.
  Ma Lijia, Chen Yimei. Determineation of cycle of lock overhaul based on the theory of economical life[J]. Port & Waterway Engineering, 2010(3):121-125.(in Chinese)
[3] 蔡景,左洪福,刘明,等. 复杂系统成组维修策略优化模型研究[J].应用科学学报,2006,24(5):533-537.
  Cai Jing, Zuo Hongfu, Liu Ming. Optimal group preventive maintenance model for complex systems[J]. Journal of Applied Sciences, 2006, 24(5):533-537.(in Chinese)
[4] Radouane L, Alaa C, Djamil A. Opportunistic policy for optimal preventive maintenance of a multi-component system incontinuous operating units[J].Computers and Chemical Engineering,2009, 33(99):1499-1510.
[5] Sheu Sheyhuei,Jhang Jhyping. A generalized group maintenance policy[J]. European Journal of Operational Research,1996, 96(2):232-247.
[6] 杨元,左黎放,刘振宇,等. 基于相关性的系统预防性维修任务成组优化[J]. 武汉大学学报:工学版,2012,45(4):539-544.
  Yang Yuan, Zuo Lifang, Liu Zhenyu, et al. Optimal grouping preventive maintenance of a system under dependencies[J]. Engineering Journal of Wuhan University: Engineering Edition, 2012, 45(4):539-544.(in Chinese)
[7] Mobley R K. An introduction to predictive maintenance[M]. New York: Elsevier Science,2002:10-12.
[8] Dekker R, Vander D F, Wildeman R.A review of multi-component maintenance models with economic dependence[J]. Mathematical Methods of Operations Research,1996, 45(45):411-435.
[9] 王灵芝,徐宇工,张家栋,等.铁路设备关键零部件的可靠性分析模型及其应用研究[J].铁道学报,2008,30(4):93-97.
  Wang Lingzhi, Xu Yugong, Zhang Jiadong, et al. Research on reliability analysis model for key components and parts of railway equipment and its application[J]. Journal of the China Railway Society, 2008, 30(4):93-97.(in Chinese)
[10] Borgonovo E,Peccati L. Uncertainty and global sensitivity analysis in the evaluation of investment projects[J]. Journal of Production Economics,2006, 104(1):62-73.

备注/Memo

备注/Memo:
收稿日期: 2013-09-23.
作者简介: 陈一梅(1961—),女,博士,教授,chenyimei@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51009028)、江苏省交通科技项目资助项目(12T06).
引用本文: 陈一梅,李少斌,金彬彬.基于预防性成组维修的人字门船闸大修周期[J].东南大学学报:自然科学版,2014,44(2):436-440. [doi:10.3969/j.issn.1001-0505.2014.02.037]
更新日期/Last Update: 2014-03-20