[1]张权,罗立民,桂志国.基于改进非局部先验的Bayesian低剂量CT投影平滑算法[J].东南大学学报(自然科学版),2014,44(3):499-503.[doi:10.3969/j.issn.1001-0505.2014.03.009]
 Zhang Quan,Luo Limin,et al.Improved nonlocal prior-based Bayesian sinogram smoothing algorithm for low-dose CT[J].Journal of Southeast University (Natural Science Edition),2014,44(3):499-503.[doi:10.3969/j.issn.1001-0505.2014.03.009]
点击复制

基于改进非局部先验的Bayesian低剂量CT投影平滑算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第3期
页码:
499-503
栏目:
计算机科学与工程
出版日期:
2014-05-16

文章信息/Info

Title:
Improved nonlocal prior-based Bayesian sinogram smoothing algorithm for low-dose CT
作者:
张权12罗立民1桂志国2
1东南大学影像科学与技术实验室, 南京210096; 2中北大学电子测试技术国家重点实验室, 太原030051
Author(s):
Zhang Quan1 2 Luo Limin1 Gui Zhiguo2
1Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
2National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China
关键词:
低剂量CT 非局部先验模型 方向性测度 Bayesian统计降噪算法
Keywords:
low-dose computed tomography(CT) nonlocal prior model orientation measure Bayesian statistical denoising algorithm
分类号:
TP391.4
DOI:
10.3969/j.issn.1001-0505.2014.03.009
摘要:
针对低剂量CT(LDCT)图像质量退化的问题,提出了一种改进的非局部先验模型,并将基于该模型的Bayesian统计算法应用于LDCT投影降噪中.首先将方向性测度引入到传统的非局部先验模型中,构建一种改进的先验模型;同时结合基于加权欧氏距离的距离测度,提高权重系数计算的准确性;然后运用基于该先验模型的Bayesian统计算法对LDCT投影进行平滑降噪;最后依据降噪后投影,利用滤波反投影(FBP)方法进行重建,得到改善的LDCT图像.实验结果表明,与典型的传统LDCT重建算法相比,该算法在抑制噪声、去除伪影的同时,较好地保留了重建图像细节信息.
Abstract:
Aiming at the problem that low-dose computed tomography(LDCT)image quality is degraded, an improved nonlocal prior model is proposed and the prior-based Bayesian statistical algorithm is also applied to sinogram denoising for LDCT. First, the orientation measure is introduced into the traditional nonlocal prior model to construct a novel prior model. The accuracy of calculating the weight parameters is increased by incorporating the distance measure based on the weighed Euclidean distance into the improved prior model. Then, the Bayesian statistical algorithm is used in sinogram smoothing for LDCT. Finally, the improved reconstructed image for LDCT is obtained by the filtered back-projection(FBP)from the smoothed projection data. Experimental results show that compared with traditional reconstruction algorithms for LDCT, the proposed algorithm is more effective in suppressing noise and eliminating streak artifacts while maintaining more reconstruction image details.

参考文献/References:

[1] Chen Y, Yang Z, Hu Y N, et al. Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means [J]. Physics in Medicine and Biology, 2012, 57: 2667-2688.
[2] 朱永成,陈阳,罗立民,等. 基于字典学习的低剂量X-ray CT图像去噪[J]. 东南大学学报:自然科学版,2012,42(5): 864-868.
  Zhu Yongcheng, Chen Yang, Luo Limin, et al. Dictionary learning based denoising of low-dose X-ray CT image [J]. Journal of Southeast University:Natural Science Edition, 2012,42(5): 864-868.(in Chinese)
[3] Chen Y, Gao D Z, Nie C, et al. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior [J]. Computerized Medical Imaging and Graphics, 2009, 33: 495-500.
[4] 马建华,黄静,陈阳,等. 基于广义Gibbs先验的低剂量X-CT优质重建研究[J]. 计算机工程与应用,2008,44(16): 4-7.
  Ma Jianhua, Huang Jing, Chen Yang, et al. Generalized Gibbs prior based high quality low-dose X-CT reconstruction [J]. Computer Engineering and Applications, 2008,44(16): 4-7.(in Chinese)
[5] Tian Z, Jia X, Yuan K H, et al. Low-dose CT reconstruction via edge-preserving total variation regularization [J]. Physics in Medicine and Biology, 2011, 56: 5949-5967.
[6] Chen Y, Li Y S, Yu W M, et al. Joint-MAP tomographic reconstruction with patch similarity based mixture prior model [J]. SIAM Journal on Multiscale Modeling and Simulation, 2011, 9(4): 1399-1419.
[7] Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise [J]. Med Phys, 1998, 25(11): 2139-2147.
[8] Demirkaya K. Reduction of noise and image artifacts in computed tomography by nonlinear filtration of the projection images [J]. SPIE Med Imag, 2001, 4322: 917-923.
[9] Wang J, Lu H B, Wen J H, et al. Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography [J]. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1022-1031.
[10] Zhang Y K, Zhang J Y, Lu H B. Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering [J]. IEEE Transactions on Nuclear Science, 2010, 57(5): 2587-2598.
[11] Buades A, Coll B, Morel J. A non-local algorithm for image denoising [C]//Proc IEEE Int Conf Comput Vision Pattern Recognit. San Diego, CA, USA, 2005: 60-65.

备注/Memo

备注/Memo:
收稿日期: 2013-10-19.
作者简介: 张权(1974—),男,博士生; 罗立民(联系人),男,博士,教授,博士生导师,luo.list@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2010CB732503)、国家自然科学基金资助项目(61071192,61271357).
引用本文: 张权,罗立民,桂志国.基于改进非局部先验的Bayesian低剂量CT投影平滑算法[J].东南大学学报:自然科学版,2014,44(3):499-503. [doi:10.3969/j.issn.1001-0505.2014.03.009]
更新日期/Last Update: 2014-05-20