[1]乔正辉,黄亚继,董卫.对称Helmholtz声源圆柱形波导的声学谐振特性[J].东南大学学报(自然科学版),2014,44(3):579-584.[doi:10.3969/j.issn.1001-0505.2014.03.023]
 Qiao Zhenghui,Huang Yaji,Dong Wei.Acoustic resonance characteristics of symmetric cylindrical waveguide with Helmholtz sound source[J].Journal of Southeast University (Natural Science Edition),2014,44(3):579-584.[doi:10.3969/j.issn.1001-0505.2014.03.023]
点击复制

对称Helmholtz声源圆柱形波导的声学谐振特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第3期
页码:
579-584
栏目:
能源与动力工程
出版日期:
2014-05-16

文章信息/Info

Title:
Acoustic resonance characteristics of symmetric cylindrical waveguide with Helmholtz sound source
作者:
乔正辉黄亚继董卫
东南大学能源热转换及其过程测控教育部重点实验室, 南京210096
Author(s):
Qiao Zhenghui Huang Yaji Dong Wei
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
谐振 Helmholtz声源 声能 对称 烟气分离
Keywords:
resonance Helmholtz sound source acoustic energy symmetry smoke separation
分类号:
TK09
DOI:
10.3969/j.issn.1001-0505.2014.03.023
摘要:
为了构造增强型驻波声场分离烟气颗粒,设计了一种具有对称Helmholtz声源的圆柱形波导驻波增强发生装置.以柱腔的谐振频率作为Helmholtz共振器的共振频率制作声源,通过理论和实验研究了该装置柱腔的共振频率随谐振阶数的变化、驻波的时空变化和声能分布,比较了有无Helmholtz声源装置驻波的时空变化,并通过实验展示了烟气颗粒在装置中的分布特征.结果表明:装置运行在设计频率时能够实现共振;一对相反相位Helmholtz声源在柱腔内产生了强驻波,在相同条件下,其强声场区的最大声压幅值是同相位的2.75倍,是无Helmholtz声源时的13.3倍,使烟气颗粒产生了聚散性分离.该装置具有结构简单、驻波品质高、声压强度大等优点,因而可广泛用于烟气颗粒分离.
Abstract:
For the purpose of generating enhanced acoustic standing wave field to separate particles in smoke, a new device with symmetrically arranged Helmholtz sound sources(HSSs)was designed. The resonance frequency of the cylindrical cavity was used as resonance frequency of HSS. The resonance frequency variation of the cylindrical cavity with the change of resonant orders, the temporal-spatial variation of standing wave and the acoustic energy distribution along axis were theoretically and experimentally researched. The comparison of the temporal-spatial variation of standing wave of the devices with and without HSSs were carried out, and the distribution of particles in smoke in the cylindrical cavity were also studied. The results show that the resonance of the device can occur when operating at the designed frequency. The HSSs operating in opposite phases can generate the enhanced acoustic standing wave field. Under the same conditions, the maximum pressure amplitude in the response magnified area is 2.75 times that caused by the HSSs operating in same phase and 13.3 times that caused by the general sound sources. Aggregation-dispersion of particles in smoke is realized. The device has simple structure, high quality of standing wave and strong strength of sound pressure and can be widely used in the field of particles separation in smoke.

参考文献/References:

[1] 吴嘉,李冰航,席葆树,等.驻波管中的颗粒悬浮现象及其分析[J].实验力学,2001,16(2):180-187.
  Wu Jia,Li Binghang,Xi Baoshu,et al. Particles suspension in a standing wave tube and its analysis [J]. Journal of Experimental Mechanics,2001,16(2):180-187.(in Chinese)
[2] Cai Feiyan,Meng Long,Cheng Xin,et al. Acoustic radiation force on small particle studied via the FDTD method [C]//2010 IEEE International Ultrasonics Symposium Proceedings. San Diego, CA,USA,2010:1187-1189.
[3] 焦晓阳,刘建芳,刘晓论,等.超声驻波悬浮能力特性[J]. 吉林大学学报:工学版, 2013, 42(3): 340-345.
  Jiao Xiaoyang,Liu Jianfeng,Liu Xiaolun,et al. Suspending ability of standing wave levitation [J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 42(3): 340-345.(in Chinese)
[4] Murimi E,Kihiu J M,Nyakoe G N,et al.A survey of ultrasonic waves in powder transportation [C]//Proceedings of the 2011 Mechanical Engineering Conference on Sustainable Research and Innovation. Nairobi,Kenya,2011,3:155-159.
[5] 陈厚涛,章汝心,曹金祥,等.声波团聚脱除柴油机尾气中超细颗粒物的试验研究[J].内燃机学报,2009,27(2): 160-165.
  Chen Houtao,Zhang Ruxin,Cao Jinxiang,et al. Experimental study on acoustic agglomeration of ultrafine particles in diesel engine exhaust [J].Transaction of CSICE, 2009,27(2):160-165.(in Chinese)
[6] Karpul D, Tapson J, Rapson M, et al. Limiting factors in acoustic separation of carbon particles in air [J]. Journal of the Acoustical Society of America, 2010, 127(4): 2153-2158.
[7] Hawkes J J, Radel S. Acoustofluidics 22: multi-wavelength resonators, applications and considerations [J]. Lab Chip, 2013, 13(4): 610-627.
[8] Wickern G, Brennberger M. Helmholtz resonators acting as sound source in automotive aeroacoustics [C]//Vehicle Aerodynamics Conference. Warrendale, PA,USA, 2009, 2226:143-162.
[9] 马大猷.现代声学理论基础[M].北京:科学出版社, 2004: 425.
[10] Lupea I. Considerations on the Helmholtz resonator simulation and experiment [J]. Proceedings of the Romanian Academy Series A—Mathematics Physics Technical Sciences Information Science, 2012, 13(2):118-124.
[11] 马大猷. 亥姆霍兹共鸣器[J]. 声学技术, 2002,21(1/2): 2-3.
  Ma Dayou. Helmholtz resonator [J]. Technical Acoustic, 2002,21(1/2): 2-3.(in Chinese)
[12] Boullosa R R, Orduna-Bustamante F. Acoustic levitation at very low frequencies [J]. Acta Acustica United with Acustica, 2010,96(2): 376-382.
[13] 唐晓寅.工程流体力学[M].重庆:重庆大学出版社, 2007:85-103.
[14] Russell D A, Parker D E, Hughes R S. Analysis of standing sound waves using holographic interferometry [J]. American Journal of Physics, 2009, 77(8): 678-682.

相似文献/References:

[1]陈洁,秦明,黄庆安.MEMS磁场传感器的设计及测试[J].东南大学学报(自然科学版),2011,41(5):929.[doi:10.3969/j.issn.1001-0505.2011.05.007]
 Chen Jie,Qin Ming,Huang Qingan.Design and experiment of MEMS magnetic sensor[J].Journal of Southeast University (Natural Science Edition),2011,41(3):929.[doi:10.3969/j.issn.1001-0505.2011.05.007]

备注/Memo

备注/Memo:
收稿日期: 2013-11-29.
作者简介: 乔正辉(1988—),男,博士生;黄亚继(联系人),男,博士,教授,博士生导师,heyyj@seu.edu.cn.
基金项目: 高等学校博士学科点专项科研基金新教师类资助项目(20130092110007).
引用本文: 乔正辉,黄亚继,董卫.对称Helmholtz声源圆柱形波导的声学谐振特性[J].东南大学学报:自然科学版,2014,44(3):579-584. [doi:10.3969/j.issn.1001-0505.2014.03.023]
更新日期/Last Update: 2014-05-20