[1]陈良辉,刘美婷,余冉.污水生物处理系统中纳米颗粒污染物的影响[J].东南大学学报(自然科学版),2014,44(3):598-604.[doi:10.3969/j.issn.1001-0505.2014.03.026]
 Chen Lianghui,Liu Meiting,Yu Ran.Impacts of nanoparticle pollutants on biological wastewater treatment systems[J].Journal of Southeast University (Natural Science Edition),2014,44(3):598-604.[doi:10.3969/j.issn.1001-0505.2014.03.026]
点击复制

污水生物处理系统中纳米颗粒污染物的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第3期
页码:
598-604
栏目:
环境科学与工程
出版日期:
2014-05-16

文章信息/Info

Title:
Impacts of nanoparticle pollutants on biological wastewater treatment systems
作者:
陈良辉刘美婷余冉
东南大学能源与环境学院, 南京 210096; 东南大学无锡太湖水环境工程研究中心, 无锡 214135
Author(s):
Chen Lianghui Liu Meiting Yu Ran
School of Energy and Environment, Southeast University, Nanjing 210096, China
Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Wuxi 214135, China
关键词:
纳米颗粒污染物 污水生物处理系统 生物毒性
Keywords:
nanoparticle pollutants biological wastewater treatment system biotoxicity
分类号:
X592
DOI:
10.3969/j.issn.1001-0505.2014.03.026
摘要:
重点探讨了水处理系统中纳米颗粒(NPs)污染物的分布和归趋特点,及其对系统中微生物菌群结构与功能、有机物与氮磷去除效率的影响.结果显示:反应器可拦截进水中90%以上NPs;NPs短期内对水处理系统有机物去除效率无明显抑制,当50 mg/L的纳米TiO2和ZnO作用70 d可使得污水总氮去除率从80.3%, 81.5%降至24.4%和70.8%,纳米ZnO甚至可使除磷效率完全丧失.NPs还会造成反应器内硝化细菌浓度和比重的下降,如50 mg/L TiO2作用70 d可使反应器内氨氧化菌和亚硝酸盐氧化菌含量分别由8%, 6%降至1%和3%,但对聚磷菌种群的相关显著影响尚未发现.NPs的生物毒性作用机制主要包括氧化胁迫、细胞膜破坏与酶活性抑制等,如50 mg/L的纳米TiO2可分别对活性污泥中的氨单加氧酶和亚硝酸盐氧化还原酶活性产生80%和55%的抑制率.
Abstract:
The distributions and fates of nanoparticles(NPs)pollutants in the biological wastewater treatment systems and the impacts of NPs on the structures and functions of microbial community, the removal of organic matter, nitrogen and phosphorus were investigated. The results show that more than 90% of NPs can be intercepted in the bioreactor. When the wastewater treatment system is exposed to the influent with 50 mg/L of nano-TiO2 and nano-ZnO for 70 d, the removal efficiencies of total nitrogen decrease from 80.3% and 81.5% to 24.4% and 70.8%, respectively. Nano-ZnO can even cause a complete loss of phosphorus removal ability. The presence of NPs can cause a decrease in density and abundance of nitrifying bacteria, but this decrease of phosphorus accumulating organisms in the microbial community of a bioreactor is not observed. When exposed to 50 mg/L nano-TiO2 for 70 d, the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria decreased from 8% and 6% to 1% and 3%, respectively. Mechanisms of NPs biotoxicity include oxidative stress, cell damage, and enzyme inhibition. When 50 mg/L nano-TiO2 is exerted on the activated sludge, the activity inhibition rates of ammonia monooxygenase and nitrite oxidoreductase are 80% and 55%, respectively.

参考文献/References:

[1] Welch C M, Compton R G. The use of nanoparticles in electroanalysis: a review[J]. Analytical and Bioanalytical Chemistry, 2006, 384(3): 601-619.
[2] Gao Y, Tang Z. Design and application of inorganic nanoparticle superstructures: current status and future challenges [J]. Small, 2011, 7(15): 2133-2146.
[3] Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602.
[4] Kiser M A, Ryu H, Jang H, et al. Biosorption of nanoparticles to heterotrophic wastewater biomass [J]. Water Research, 2010, 44(14): 4105-4114.
[5] Wang H, Keller A, Li F. Natural organic matter removal by adsorption onto carbonaceous nanoparticles and coag ulation [J]. Journal of Environmental Engineering, 2010, 136(10): 1075-1081.
[6] Garcia A, Delgado L, Tora J A, et al. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment [J]. Journal of Hazardous Materials, 2012, 199-200: 64-72.
[7] Radniecki T S, Stankus D P, Neigh A, et al. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea [J]. Chemosphere, 2011, 85(1): 43-49.
[8] Qiang Z X, Hong Y L, Meng T, et al. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts [J]. Biomedical and Environmental Sciences, 2011, 24(6): 661-669.
[9] Kumar A, Pandey A K, Singh S S, et al. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli [J]. Free Radic Biol Med, 2011, 51(10): 1872-1881.
[10] Choi O, Deng K K, Kim N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J]. Water Research, 2008, 42(12): 3066-3074.
[11] Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal [J]. Environ Sci Technol, 2011, 45(7): 2826-2832.
[12] Brar S K, Verma M, Tyagi R D, et al. Engineered nanoparticles in wastewater and wastewater sludge-evidence and impacts [J]. Waste Manag, 2010, 30(3): 504-520.
[13] Som C, Berges M, Chaudhry Q, et al. The importance of life cycle concepts for the development of safe nanoproducts [J]. Toxicology, 2010, 269(2): 160-169.
[14] Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes)for different regions [J]. Environ Sci Technol, 2009, 43(24): 9216-9222.
[15] Blaser S A, Scheringer M, MacLeod M, et al. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles [J]. Science of the Total Environment, 2008, 390(2/3): 396-409.
[16] Kiser M A, Westerhoff P, Benn T, et al. Titanium nanomaterial removal and release from wastewater treatment plants [J]. Environ Sci Technol, 2009, 43(17): 6757-6763.
[17] Westerhoff P, Song G, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials [J]. Journal of Environmental Monitoring, 2011, 13(5): 1195-1203.
[18] Mu H, Chen Y, Xiao N. Effects of metal oxide nanoparticles(TiO2, Al2O3, SiO2 and ZnO)on waste activated sludge anaerobic digestion [J]. Bioresour Technol, 2011, 102(22): 10305-10311.
[19] Zheng X, Chen Y, Wu R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge [J]. Environ Sci Technol, 2011, 45(17): 7284-7290.
[20] Liang Z, Das A, Hu Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system [J]. Water Research, 2010, 44(18): 5432-5438.
[21] Sheng Z, Liu Y. Effects of silver nanoparticles on wastewater biofilms [J]. Water Research, 2011, 45(18): 6039-6050.
[22] Mueller N C, Nowack B. Exposure modeling of engineered nanoparticles in the environment [J]. Environ Sci Technol, 2008, 42(12): 4447-4453.
[23] Hou L, Li K, Ding Y, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction [J]. Chemosphere, 2012, 87(3): 248-252.
[24] Chen Y, Wang D, Zhu X, et al. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process [J]. Environ Sci Technol, 2012, 46(22): 12452-12458.
[25] Ma H, Williams P L, Diamond S A. Ecotoxicity of manufactured ZnO nanoparticles—A review [J]. Environmental Pollution, 2013, 172(1): 76-85.
[26] Mu H, Chen Y. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion [J]. Water Research, 2011, 45(17): 5612-5620.
[27] Mauriz E, Calle A, Montoya A, et al. Determination of environmental organic pollutants with a portable optical immunosensor [J]. Talanta, 2006, 69(2): 359-364.
[28] Ryther J H, Dunstan W M. Nitrogen, phosphorus, and eutrophication in the coastal marine environment[J]. Science, 1971, 171(3975): 1008-1013.
[29] Chen Y, Chen H, Zheng X, et al. The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms [J]. Journal of Hazardous Materials, 2012, 239-240: 88-94.
[30] Comeau Y, Hall K J, Hancock R E W, et al. Biochemical model for enhanced biological phosphorus removal [J]. Water Research, 1986, 20(12): 1511-1521.
[31] 周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
  Zhou Ju, Lei Ting. Review and prospects on methodology and affecting factors of soil mi-crobial diversity [J]. Biodiversity Science, 2007, 15(3): 306-311.(in Chinese)
[32] Zheng X, Su Y, Chen Y. Acute and chronic responses of activated sludge viability and performance to silica nanoparticles [J]. Environ Sci Technol, 2012, 46(13): 7182-7188.
[33] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622-627.
[34] Choi O, Hu Z H. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria [J]. Environ Sci Technol, 2008, 42(12): 4583-4588.
[35] Lok C N, Ho C M, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles [J]. Journal of Proteome Research, 2006, 5(4): 916-924.
[36] Somasundaran P, Fang X, Ponnurangam S, et al. Nanoparticles: characteristics, mechanisms and modulation of biotoxicity [J]. KONA Powder and Particle Journal, 2010, 28(1): 38-49.
[37] Miao A J, Zhang X Y, Luo Z, et al. Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton [J]. Environ Toxicol Chem, 2010, 29(12): 2814-2822.
[38] Lee Y J, Kim J, Oh J, et al. Ion-release kinetics and ecotoxicity effects of silver nanoparticles [J]. Environ Toxicol Chem, 2012, 31(1): 155-159.

备注/Memo

备注/Memo:
收稿日期: 2013-10-20.
作者简介: 陈良辉(1991—),男,硕士生;余冉(联系人),女,博士,副教授,yuran@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51208092)、国家教育部博士学科点专项科研基金资助项目(20120092120010)、江苏省自然科学基金资助项目(BK2012124).
引用本文: 陈良辉,刘美婷,余冉.污水生物处理系统中纳米颗粒污染物的影响[J].东南大学学报:自然科学版,2014,44(3):598-604. [doi:10.3969/j.issn.1001-0505.2014.03.026]
更新日期/Last Update: 2014-05-20