[1]张涛,蔡国军,刘松玉.南京地区典型土体热学特性与预测模型[J].东南大学学报(自然科学版),2014,44(3):655-661.[doi:10.3969/j.issn.1001-0505.2014.03.036]
 Zhang Tao,Cai Guojun,Liu Songyu.Thermal properties and prediction model of typical soils in Nanjing area[J].Journal of Southeast University (Natural Science Edition),2014,44(3):655-661.[doi:10.3969/j.issn.1001-0505.2014.03.036]
点击复制

南京地区典型土体热学特性与预测模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第3期
页码:
655-661
栏目:
土木工程
出版日期:
2014-05-16

文章信息/Info

Title:
Thermal properties and prediction model of typical soils in Nanjing area
作者:
张涛蔡国军刘松玉
东南大学岩土工程研究所, 南京 210096
Author(s):
Zhang Tao Cai Guojun Liu Songyu
Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
关键词:
热传导 热阻系数 含水量 干密度 预测模型
Keywords:
heat transfer thermal resistivity moisture content dry density prediction model
分类号:
TU47
DOI:
10.3969/j.issn.1001-0505.2014.03.036
摘要:
介绍了热探针测试技术及其理论,采用非稳态热探针对南京地区的黏土、粉土、细砂和粗砂4种不同岩土材料进行热阻系数测试,研究不同干密度条件下含水量改变引起的土体热阻系数的变化规律.研究结果表明:非稳态热探针可有效测试土体热阻系数;土体热阻系数随含水量增加而减小,当含水量接近或超过临界含水量时,热阻系数趋于常数;临界含水量由土体固有的基本特性所决定;干密度越小,热阻系数越大;热阻系数随颗粒粒径的增大而减小,颗粒粒径对土体热传导特性的影响还与其他因素密切相关.最后针对现有热阻模型存在的不足,基于试验结果和现有模型,提出考虑多因素的土体热阻预测模型,并通过算例验证了该模型的有效性和可靠度.
Abstract:
The thermal probe testing technology and its theory are introduced. The thermal resistivity of clay, silt, fine sand, and coarse sand in Nanjing area is tested by transient probe and the relationships between the soil thermal resistivity and moisture content are analyzed under the conditions of different dry densities. It can be concluded that transient probe can effectively test the soil thermal resistivity. Soil thermal resistivity decreases with the increase of moisture content; when the moisture content is close to or more than the critical moisture content, thermal resistivity tends to be constant. The critical moisture content is determined by the soil physical properties. Thermal resistivity increases with the decrease of dry density. When particle size increases, thermal resistivity decreases; the effect of particle size on the heat transfer characteristics of soil is closely related to other factors. Finally, based on the laboratory test results and the existing model, a new prediction model which considers many factors is put forward. The effectiveness and reliability of the model are verified by example.

参考文献/References:

[1] Cote J, Fillion M H, Konrad J M. Estimating hydraulic and thermal conductivities of crushed granite using porosity and equivalent particle size[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(9): 834-842.
[2] 叶为民,王琼,潘虹,等.高压实高庙子膨润土的热传导性能[J].岩土工程学报,2010,32(6):821-826.
  Ye Weimin, Wang Qiong, Pan Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826.(in Chinese)
[3] 原喜忠,李宁,赵秀云,等.非饱和(冻)土导热系数预估模型研究[J].岩土力学,2010,31(9):2689-2694.
  Yuan Xizhong, Li Ning, Zhao Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9): 2689-2694.(in Chinese)
[4] 白冰,赵成刚.温度对黏性土介质力学特性的影响[J].岩土力学,2003,24(4):533-537.
  Bai Bing, Zhao Chenggang. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4): 533-537.(in Chinese)
[5] Cote J, Konrad J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458.
[6] Naidu A D, Singh D N. Field probe for measuring thermal resistivity of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 213-216.
[7] 卢应发,吴延春,杨丽平,等.非饱和土热力学参数确定的探讨[J].岩土力学,2008,29(7):1747-1752.
  Lu Yingfa, Wu Yanchun, Yang Liping, et al. Investigation on determination of thermodynamical parameters of unsaturated soil[J]. Rock and Soil Mechanics, 2008, 29(7): 1747-1752.(in Chinese)
[8] 陈善雄,陈守义.砂土热导率的实验研究[J].岩土工程学报,1994,16(5):47-53.
  Chen Shanxiong, Chen Shouyi. Experimental study on thermal conductivity of sands[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(5): 47-53.(in Chinese)
[9] Nusier O, Abu-hamdeh N. Laboratory techniques to evaluate thermal conductivity for some soils[J]. Heat and Mass Transfer, 2003, 39(2): 119-123.
[10] Hotz R D, Ge L. Investigation of the thermal conductivity of compacted silts and its correlation to the elastic modulus[J]. Journal of Materials in Civil Engineering, 2009, 22(4): 408-412.
[11] Tang A M, Cui Y J, Le T T. A study on the thermal conductivity of compacted bentonites[J]. Applied Clay Science, 2008, 41(3): 181-189.
[12] Gangadhara R M, Singh D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773.
[13] 苏天明,刘彤,李晓昭,等.南京地区土体热物理性质测试与分析[J].岩石力学与工程学报,2006,25(6):1278-1283.
  Su Tianming, Liu Tong, Li Xiaozhao, et al. Test and analysis of thermal properties of soil in Nanjing district[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1278-1283.(in Chinese)
[14] 肖琳,李晓昭,赵晓豹,等.含水量与孔隙率对土体热导率影响的室内实验[J].解放军理工大学学报,2008,9(3):241-247.
  Xiao Lin, Li Xiaozhao, Zhao Xiaobao, et al. Laboratory on influences of moisture content and porosity on thermal conductivity of soils[J]. Journal of PLA University of Science and Technology, 2008, 9(3): 241-247.(in Chinese)
[15] 陈宝,许邹,姚聪琳,等.上海(5)1层粉质黏土的热传导特性[J].同济大学学报,2012,40(6):843-848.
  Chen Bao, Xu Zou, Yao Conglin, et al. Thermal conductivity of Shanghai (5)1 silty clay[J]. Journal of Tongji University, 2012, 40(6): 843-848.(in Chinese)
[16] Hooper F C, Lepper F R. Transient heat flow apparatus for the determination of thermal conductivities[J]. Transactions of the American Society of Heating and Ventilating Engineers, 1950, 56(2): 309-324.
[17] Dali N A, Singh D N. A generalized procedure for determining thermal resistivity of soils[J]. International Journal of Thermal Sciences, 2004, 43(1): 43-51.
[18] Salomone L A, Kovacs W D. Thermal resistivity of soils[J]. Journal of Geotechnical Engineering, 1984, 110(3): 375-389.
[19] Kersten M S. Thermal properties of soils[J]. Highway Research Board Special Report, 1952(2): 161-166.
[20] Woodside W, Messmer J H. Thermal conductivity of porous media Ⅰ unconsolidated sands[J]. Journal of Applied Physics, 1961, 32(9): 1688-1699.

相似文献/References:

[1]毕可东,陈云飞,杨决宽,等.不同结构单壁碳纳米管热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):420.[doi:10.3969/j.issn.1001-0505.2006.03.018]
 Bi Kedong,Chen Yunfei,Yang Juekuan,et al.Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes with different structures[J].Journal of Southeast University (Natural Science Edition),2006,36(3):420.[doi:10.3969/j.issn.1001-0505.2006.03.018]

备注/Memo

备注/Memo:
收稿日期: 2013-11-25.
作者简介: 张涛(1986—),男,博士生;刘松玉(联系人),男,博士,教授,博士生导师,liusy@seu.edu.cn.
基金项目: 国家自然科学基金重点资助项目(41330641)、国家自然科学基金资助项目(41202203)、国家“十二五”科技支撑计划资助项目(2012BAJ01B02)、教育部新世纪优秀人才支持计划资助项目(NCET-13-0118)、中央高校基本科研业务费资助项目(2242013R30014)、江苏省交通科学研究计划资助项目(2013Y04).
引用本文: 张涛,蔡国军,刘松玉.南京地区典型土体热学特性与预测模型[J].东南大学学报:自然科学版,2014,44(3):655-661. [doi:10.3969/j.issn.1001-0505.2014.03.036]
更新日期/Last Update: 2014-05-20