[1]张世义,范颖芳,李宁宁.纳米高岭土改性砂浆抗酸雨侵蚀试验研究[J].东南大学学报(自然科学版),2014,44(3):668-672.[doi:10.3969/j.issn.1001-0505.2014.03.038]
 Zhang Shiyi,Fan Yingfang,Li Ningning.Experimental study on acid resistance of nano-kaolinite modified cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(3):668-672.[doi:10.3969/j.issn.1001-0505.2014.03.038]
点击复制

纳米高岭土改性砂浆抗酸雨侵蚀试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第3期
页码:
668-672
栏目:
化学化工
出版日期:
2014-05-16

文章信息/Info

Title:
Experimental study on acid resistance of nano-kaolinite modified cement mortar
作者:
张世义范颖芳李宁宁
大连海事大学道路与桥梁工程研究所, 大连 116026
Author(s):
Zhang Shiyi Fan Yingfang Li Ningning
Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
关键词:
纳米高岭土 砂浆 酸雨 腐蚀 微观结构
Keywords:
nano-kaolinite cement mortar acid rain corrosion microstructure
分类号:
TQ177.62
DOI:
10.3969/j.issn.1001-0505.2014.03.038
摘要:
为了研究纳米高岭土对砂浆抗酸雨腐蚀性能的影响,配置pH值为1.5的硫酸硝酸混合溶液以模拟酸雨环境,研究了模拟酸雨环境下包含不同纳米高岭土掺量(0,1%,3%,5%)的砂浆试件的物理力学性质.利用场发射扫描电镜分析了酸性介质侵蚀过程中砂浆材料微观结构的变化规律,探讨了纳米高岭土对砂浆抗酸雨腐蚀性能的改善机理.试验结果表明:纳米高岭土能够改善砂浆的微观结构,提高砂浆基体密实性,掺入水泥质量1%的纳米高岭土砂浆试件抗压强度提高了21%;同时,还能有效阻碍H+和SO2-4进入砂浆基体内部,减弱了H+引起的溶蚀破坏以及SO2-4引起的膨胀破坏,显著提高砂浆抗酸雨腐蚀能力.酸雨腐蚀60 d后,掺入水泥质量1%的纳米高岭土砂浆试件表面溶蚀现象减弱,强度损失率较普通砂浆试件降低27.23%.
Abstract:
The effects of nano-kaolinite clay on the acid resistance of the ordinary cement mortar are investigated. To simulate the acid deposit condition, the acid solutions with a pH level of 1.5 are prepared by the mixture of sulfate and nitric acid in the laboratory. The physical and mechanical properties of the cement mortar with four different amounts of nano-kaolinite clay additives(0, 1%, 3% and 5%)are studied. The scanning electron microscopy(SEM)is used to analyze the microstructure evolution of cement mortar during the acid corrosion, and the improvement mechanism of the nano-kaolinite clay for the acid resistance of the cement mortar is discussed. The experimental results show that nano-kaolinite clay leads to a denser microstructure in the mortar matrix. The compressive strength of the modified cement mortar with 1% nano-kaolinite clay is increased by 21%. And the addition of nano-kaolinite clay can effectively impede the penetration of H+ and SO2-4 into the cement mortar matrix, weaken the corrosion damage caused by H+ and the expanding erosion by SO2-4, and therefore improve the acid resistance of the cement mortar significantly. After 60 d exposure, the surface erosion of the modified cement mortar with 1% nano-kaolinite clay weakens, and compared with the ordinary cement mortar, the strength degradation ratio decreases by 27.23%.

参考文献/References:

[1] Kisimoto Y, Hokoi S, Harada K, et al. Influences of acid rain on the neutralization process[C]//Proceedings of the 3rd International Building Physics Conference. Montreal, Canada, 2006: 209-216.
[2] Jahani F, Devinny J, Mansfeld F, et al. Investigations of sulfuric acid corrosion of concrete.Ⅰ: modeling and chemical observations [J]. Journal of Environmental Engineering, 2001, 127(7): 572-579.
[3] Zivica V, Bajza A. Acidic attack of cement based materials—a review. Part 1. Principle of acid attack [J]. Construction and Building Materials, 2001, 15(8): 331-340.
[4] Li G Y, Xiong G J, Lu Y H, et al. The physical and chemical effects of long-term sulphuric acid exposure on hybrid modified cement mortar [J]. Cement and Concrete Composites, 2009, 31(5): 325-330.
[5] Fan Y F, Hu Z Q, Zhang Y Z, et al. Deterioration of compressive property of concrete under simulated acid rain environment [J]. Construction and Building Materials, 2010, 24(10): 1975-1983.
[6] Xie S D, Qi L, Zhou D. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory [J]. Atmospheric Environment, 2004, 38(27): 4457-4466.
[7] Chen M C, Wang K, Xie L. Deterioration mechanism of cementitious materials under acid rain attack [J]. Engineering Failure Analysis, 2013, 27: 272-285.
[8] 张英姿,范颖芳,李宏男,等.模拟酸雨环境下混凝土抗拉性能试验研究[J]. 建筑材料学报, 2012, 15(6):857-862.
  Zhang Yingzi, Fan Yingfang, Li Hongnan, et al. Experimental study on tensile mechanical properties of concrete in simulated acid environment [J]. Journal of Building Materials, 2012, 15(6): 857-862.(in Chinese)
[9] 张英姿, 范颖芳, 刘江林,等. 模拟酸雨环境下C40混凝土抗压性能试验研究[J]. 建筑材料学报, 2010, 13(1):105-110.
  Zhang Yingzi, Fan Yingfang, Liu Jianglin, et al. Experimental study on compressive property of C40 concrete in simulated acid environment [J]. Journal of Building Materials, 2010, 13(1): 105-110.(in Chinese)
[10] 王凯,马保国,龙世宗.酸雨侵蚀下水泥石物相组成变化的微观分析[J].硅酸盐学报,2009,37(5): 880-884.
  Wang Kai, Ma Baoguo, Long Shizong. Microanalysis of the change of phase composition of hardened cement paste in response to acid rain attack [J]. Journal of the Chinese Society, 2009, 37(5): 880-884.(in Chinese)
[11] Wang K S, Dai G L, Kong F C, et al. Study on dynamics performance of nano-concrete [J]. Advanced Materials and Process Technology, 2012, 217(199): 199-202.
[12] Kawashima S, Hou P K, Corr D J, et al. Modification of cement-based materials with nano-particles [J]. Cement and Concrete Composites, 2013, 36: 8-15.
[13] Kawashima S, Jae H K, Corr D J, et al. Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nano-clays [J]. Construction and Building Materials, 2012, 36: 749-757.
[14] Fan Y F, Zhang S Y, Kawashima S, et al. Influence of kaolinite clay on the chloride diffusion property of cement-based material [J]. Cement and Concrete Composites, 2014, 45: 117-124.
[15] 中华人民共和国交通部公路科学研究院.JTG E30—2005公路工程水泥及水泥混凝土试验规程[S].北京:中国交通出版社,2005.

相似文献/References:

[1]刘志勇,张云升,姜骞,等.原位监测水泥基材料早期电阻率的变化过程[J].东南大学学报(自然科学版),2012,42(2):378.[doi:10.3969/j.issn.1001-0505.2012.02.035]
 Liu Zhiyong,Zhang Yunsheng,Jiang Qian,et al.In-situ monitoring of early-age electrical resistivity change process of cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(3):378.[doi:10.3969/j.issn.1001-0505.2012.02.035]
[2]范玉辉,肖建庄,曹明.再生骨料混凝土徐变特性基础试验[J].东南大学学报(自然科学版),2014,44(3):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
 Fan Yuhui,Xiao Jianzhuang,Cao Ming.Fundamental test on creep characteristics of recycled aggregate concrete[J].Journal of Southeast University (Natural Science Edition),2014,44(3):638.[doi:10.3969/j.issn.1001-0505.2014.03.033]
[3]张世义,范颖芳,李宁宁.纳米高岭土改性混凝土与钢筋的黏结性能[J].东南大学学报(自然科学版),2015,45(2):382.[doi:10.3969/j.issn.1001-0505.2015.02.032]
 Zhang Shiyi,Fan Yingfang,Li Ningning.Bonding behavior between steel bars and concrete modified with nano-kaolinite clay[J].Journal of Southeast University (Natural Science Edition),2015,45(3):382.[doi:10.3969/j.issn.1001-0505.2015.02.032]
[4]张丽辉,刘建忠,阳知乾,等.不同截面形状PP纤维对砂浆抗塑性开裂的影响及机理[J].东南大学学报(自然科学版),2016,46(1):160.[doi:10.3969/j.issn.1001-0505.2016.01.026]
 Zhang Lihui,Liu Jianzhong,Yang Zhiqian,et al.Influences and mechanism of polypropylene fibers with different cross-sections on anti-plastic-cracking of cement mortar[J].Journal of Southeast University (Natural Science Edition),2016,46(3):160.[doi:10.3969/j.issn.1001-0505.2016.01.026]

备注/Memo

备注/Memo:
收稿日期: 2013-10-29.
作者简介: 张世义(1986—),男,博士生;范颖芳(联系人),女,博士,教授,博士生导师,fanyf72@aliyun.com.
基金项目: 国家自然科学基金资助项目(50708010,51178069)、辽宁省“百千万人才工程”资助项目(2010921064)、高等学校青年骨干教师基金资助项目(2011JC031).
引用本文: 张世义,范颖芳,李宁宁.纳米高岭土改性砂浆抗酸雨侵蚀试验研究[J].东南大学学报:自然科学版,2014,44(3):668-672. [doi:10.3969/j.issn.1001-0505.2014.03.038]
更新日期/Last Update: 2014-05-20