[1]王青云,赵力,梁瑞宇,等.紧致麦克风阵列压缩采样与DOA估计方法[J].东南大学学报(自然科学版),2014,44(4):687-691.[doi:10.3969/j.issn.1001-0505.2014.04.001]
 Wang Qingyun,Zhao Li,Liang Ruiyu,et al.Compressive sampling and DOA estimation method for miniature microphone array[J].Journal of Southeast University (Natural Science Edition),2014,44(4):687-691.[doi:10.3969/j.issn.1001-0505.2014.04.001]
点击复制

紧致麦克风阵列压缩采样与DOA估计方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第4期
页码:
687-691
栏目:
计算机科学与工程
出版日期:
2014-07-16

文章信息/Info

Title:
Compressive sampling and DOA estimation method for miniature microphone array
作者:
王青云12赵力1梁瑞宇12王侠1孟桥1
1东南大学信息科学与工程学院, 南京210096; 2南京工程学院通信工程学院, 南京211167
Author(s):
Wang Qingyun12 Zhao Li1 Liang Ruiyu12 Wang Xia1 Meng Qiao1
1School of Information Science and Engineering, Southeast University, Nangjing 210096, China
2 School of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
紧致麦克风阵列 压缩采样 DOA估计
Keywords:
miniature microphone array compressive sampling direction of arrival(DOA)estimation
分类号:
TP391.42
DOI:
10.3969/j.issn.1001-0505.2014.04.001
摘要:
针对紧致麦克风阵采样信号大量冗余的问题,提出了一种ΣΔAD压缩采样方法.该方法将软硬件相结合,在ΣΔAD转换器内部进行压缩采样.压缩采样中采用自适应过程,去除信号中的冗余分量,并将压缩后的信号进行稀疏编码.仿真结果表明,使用该方法对紧致麦克风阵接收信号进行压缩编码时,通过选取合适的稀疏化阈值,可使源数据的压缩比达到10%~30%.压缩采样后的信号可以用于DOA估计等应用.针对八元紧致麦克风圆阵和DSP实时系统的DOA估计实验结果表明:这种DOA估计方法在阵元间距低至2 cm时仍能正常工作;当阵列尺寸减小时,相比经典MUSIC算法和PHAT-GCC算法,该方法定位精度更高,噪声鲁棒性更强.
Abstract:
Aiming at the problem of the redundancy of the sampled data in a compressive microphone array, a new ΣΔAD(analog-digital)compressive sampling method is proposed. Combined with software and hardware, the input signals are compressively sampled within the ΣΔAD converter. With the help of adaptive estimation procedure in sampling, the redundancy of the input signal is removed and the sparse output signal is encoded. The simulation results demonstrate that the compression rate is 10% to 30% when the proper sparseness threshold is set for the miniature microphone array during the signal coding process by this method. The compressively sampled signal can be used in the applications such as direction of arrival(DOA)estimation. The experimental results for an eight-component miniature microphone array and a real-time digital signal processing system demonstrate that when the aperture of the microphone array is low to 2 cm, the direction of the arrival is estimated successfully by this DOA estimation method. When the aperture of the array decreases, compared with the traditional multiple signal classification(MUSIC)algorithm and the phase transform generalized cross-correlation(PHAT-GCC)algorithm, the proposed DOA estimation method exhibits higher positioning accuracy and noise robustness.

参考文献/References:

[1] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2] Akcakaya M, Tarokh V. Shannon-theoretic limits on noisy compressive sampling [J]. IEEE Transaction on Information Theory, 2010, 56(1): 492-504.
[3] Peng Maoling, Chen Shanxiong, Yu Guanglin. Sparse recovery and compressive sampling based on FFT and DWT [C]//Proceedings of the International Conference on Information Engineering and Applications. London: Springer, 2012: 619-624.
[4] Candes E, Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
[5] Candes E, Romberg J. Sparsity and incoherence in compressive sampling [J]. Inverse Problems, 2007, 23(3): 969-985.
[6] Zymnis A, Boyd S, Candes E. Compressed sensing with quantized measurements [J]. IEEE Signal Processing Letters, 2010, 17(2): 149-152.
[7] Luo Chenchi. Compressive sampling with a successive approximation ADC architecture [C]//Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Prague, Czech Republic, 2011: 3920-3923.
[8] Wu A B, Burnaby B C, Sarunic M V, et al. Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images [J]. IEEE Transactions on Biomedical Engineering, 2012, 60(2): 470-478.
[9] Ayllon D, Gil-Pita R, Rosa-Zurera M. Optimum microphone array for monaural and binaural in-the-canal hearing aids [C]//Proceedings of 2011 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP). San Juan, Puerto Rico, 2011: 177-180.
[10] Li X, Ma X, Yan S, et al. Single snapshot DOA estimation by compressive sampling [J]. Applied Acoustics, 2013, 74(7): 926-930.
[11] Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010 -3022.
[12] Amit Gore, Ahantanu Chakrabartty. A min-max optimization framework for designing ΣΔ learners: theory and hardware [J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2010, 57(3): 604-617.
[13] de la Rosa J M. Sigma-delta modulators: tutorial overview, design guide, and state-of-the-art survey [J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2011, 58(1): 1-21.
[14] Donoho D L, Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862.
[15] Amin Fazel, Shantanu Chakrabartty. Sigma-delta learning for super-resolution source separation on high-density microphone arrays [C]//Proceedings of 2010 IEEE Proceedings of Circuits and Systems(ISCAS).Paris, France, 2010: 797-800.
[16] Benesty Jacob, Chen Jingdong, Huang Yiteng. Microphone array signal processing [M]. Berlin, German: Springer, 2008: 187-199.

备注/Memo

备注/Memo:
收稿日期: 2013-12-23.
作者简介: 王青云(1972—),女,博士,副教授;赵力(联系人),男,博士,教授,博士生导师,zhaoli@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61301219,61375028)、中国博士后基金资助项目(2012M520973)、江苏省自然科学基金资助项目(BK20130241)、南京工程学院科研基金资助项目(ZKJ201202).
引用本文: 王青云,赵力,梁瑞宇,等.紧致麦克风阵列压缩采样与DOA估计方法[J].东南大学学报:自然科学版,2014,44(4):687-691. [doi:10.3969/j.issn.1001-0505.2014.04.001]
更新日期/Last Update: 2014-07-20