[1]许娟,陈汉武,刘志昊,等.基于六量子态的高容量量子秘密共享方案[J].东南大学学报(自然科学版),2014,44(4):708-711.[doi:10.3969/j.issn.1001-0505.2014.04.005]
 Xu Juan,Chen Hanwu,Liu Zhihao,et al.High-capacity quantum secret sharing scheme based on six states[J].Journal of Southeast University (Natural Science Edition),2014,44(4):708-711.[doi:10.3969/j.issn.1001-0505.2014.04.005]
点击复制

基于六量子态的高容量量子秘密共享方案()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第4期
页码:
708-711
栏目:
计算机科学与工程
出版日期:
2014-07-16

文章信息/Info

Title:
High-capacity quantum secret sharing scheme based on six states
作者:
许娟1陈汉武2刘志昊2袁家斌1
1南京航空航天大学计算机科学与技术学院, 南京 210016; 2东南大学计算机科学与工程学院, 南京 210096
Author(s):
Xu Juan1 Chen Hanwu2 Liu Zhihao2 Yuan Jiabin1
1College of Computer and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
量子秘密共享 容量 安全性 量子保密通信
Keywords:
quantum secret sharing capacity security quantum secure communication
分类号:
TP309.7;TP393
DOI:
10.3969/j.issn.1001-0505.2014.04.005
摘要:
为了提高一方到多方量子秘密共享方案的量子比特容量, 提出了一种基于六量子态的新方案. 发送方首先根据共享秘密对初始的光子序列进行相应的酉操作,然后进行随机的酉操作并发送给接收方. 接收方依次进行随机的酉操作, 最后一位接收方将光子序列返回给发送方. 发送方选用正确的测量基进行测量, 并公布与测量结果有关的信息;接收方则根据该信息和各自的酉操作获得共享秘密. 理论分析结果表明, 当存在n位接收方时, 所提方案的量子比特容量为1,而已有的类似方案为1/n, 故前者具有容量高、所需量子资源少的优点. 此外, 所提方案中发送方负责测量, 所有接收方只需执行酉操作, 因此对接收方的设备要求低, 特别适用于发送方设备条件远超过接收方的情况.
Abstract:
To improve the qubit capacity of quantum secret sharing(QSS)schemes between one and many parties, a novel QSS scheme based on six states is proposed. In this scheme, the sender prepares a photon sequence, implements unitary operations according to the secret to be shared, and then performs random unitary operations before sending it to receivers. Afterwards, the receivers perform random unitary operations on the photon sequence in turn and the last one sends it back to the sender. The sender measures the photons by using correct measuring bases and broadcasts a piece of information related with the results. Then, the receivers acquire the shared secret based on the information and their own unitary operations. The theoretical analysis results show that when there are n receivers, the qubit capacity of the proposed scheme is 1 while that of similar existed schemes is 1/n. So the former has a higher qubit capacity and saves quantum resource. In particular, in the proposed scheme, the sender performs the measurement while the receivers only need to perform unitary operations; thus, it has a low requirement for receivers’ equipment. Therefore, it is extremely suitable to the situation that the sender has much better equipment than receivers.

参考文献/References:

[1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing [C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India, 1984: 175-179.
[2] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting [J]. Physical Review A, 1999, 59(1): 162-168.
[3] Guo G, Guo G. Quantum secret sharing without entanglement [J]. Physics Letters A, 2003, 310(4): 247-251.
[4] Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement [J]. Physical Review A, 2005, 72(1): 012304.
[5] Gao T, Yan F L, Li Y C. Quantum secret sharing between m-party and n-party with six states [J]. Science in China Series G, 2009, 52(8): 1191-1202.
[6] Xu J, Chen H, Liu W, et al. An efficient quantum secret sharing scheme based on orthogonal product states [C]//Proceeding of 2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain, 2010: 949-952.
[7] Shi R H, Huang L S, Yang W, et al. Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state [J]. Quantum Information Processing, 2011, 10(1): 53-61.
[8] Liu Z H, Chen H W, Xu J, et al. High-dimensional deterministic multiparty quantum secret sharing without unitary operations [J]. Quantum Information Processing, 2012, 11(6): 1785-1795.
[9] Xu J, Chen H W, Liu Z H, et al. Quantum secret sharing without exclusive OR of qubits’ measuring results [C]//Proceedings of 2012 IEEE Congress on Evolutionary Computation. Brisbane, Australia, 2012: 613-616.
[10] Xu J, Yuan J B. Improvement and extension of quantum secret sharing using orthogonal product states [J]. International Journal of Quantum Information, 2014, 12(1): 1450008.
[11] Wagenknecht C, Li C M, Reingruber A, et al. Experimental demonstration of a heralded entanglement source [J]. Nature Photonics, 2010, 4: 549-552.
[12] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters, 2000, 85(2): 441-444.
[13] Cai Q. Eavesdropping on the two-way quantum communication protocols with invisible photons [J]. Physics Letters A, 2006, 351(1): 23-25.
[14] Deng F G, Li X H, Zhou H Y, et al. Erratum: improving the security of multiparty quantum secret sharing against Trojan Horse attack(Phys. Rev. A 72, 044302(2005))[J]. Physical Review A, 2006, 73(4): 049901.
[15] Li C M, Chang C C, Hwang T. Comment on “quantum secret sharing between multiparty and multiparty without entanglement” [J]. Physical Review A, 2006, 73(1): 016301.

相似文献/References:

[1]张晓明.基于音频统计特性的鲁棒水印算法[J].东南大学学报(自然科学版),2009,39(3):447.[doi:10.3969/j.issn.1001-0505.2009.03.006]
 Zhang Xiaoming.Robust watermarking algorithm based on audio statistical specification[J].Journal of Southeast University (Natural Science Edition),2009,39(4):447.[doi:10.3969/j.issn.1001-0505.2009.03.006]
[2]陈立全,胡爱群.WLAN上VoIP容量提高的新方法[J].东南大学学报(自然科学版),2006,36(4):508.[doi:10.3969/j.issn.1001-0505.2006.04.003]
 Chen Liquan,Hu Aiqun.New capacity enhancement scheme for VoIP over WLAN[J].Journal of Southeast University (Natural Science Edition),2006,36(4):508.[doi:10.3969/j.issn.1001-0505.2006.04.003]
[3]沈连丰,瞿慧,徐平平.WPAN及多网互通环境下通信网容量的分析[J].东南大学学报(自然科学版),2003,33(4):379.[doi:10.3969/j.issn.1001-0505.2003.04.001]
 Shen Lianfeng,Qu Hui,Xu Pingping.Study on the capacities of the communication networks under the environment of WPAN and infiltration of the multi-networks[J].Journal of Southeast University (Natural Science Edition),2003,33(4):379.[doi:10.3969/j.issn.1001-0505.2003.04.001]
[4]陈国安,尤肖虎.W-CDMA连续Pilot专用导码功率动态调整[J].东南大学学报(自然科学版),2000,30(1):32.[doi:10.3969/j.issn.1001-0505.2000.01.006]
 Chen Guoan,You Xiaohu.Dynamically Adjusting the Power of User Dedicated Pilot for W-CDMA System with Continuous Pilot[J].Journal of Southeast University (Natural Science Edition),2000,30(4):32.[doi:10.3969/j.issn.1001-0505.2000.01.006]
[5]刘陈,吴镇扬.容量无损满分集度空时分组码[J].东南大学学报(自然科学版),2005,35(5):664.[doi:10.3969/j.issn.1001-0505.2005.05.002]
 Liu Chen,Wu Zhenyang.Family of capacity lossless and full-diversity space-time block codes[J].Journal of Southeast University (Natural Science Edition),2005,35(4):664.[doi:10.3969/j.issn.1001-0505.2005.05.002]
[6]杨涛,程万里.城市交通网络广义容量应用研究——以南京市为例[J].东南大学学报(自然科学版),1992,22(5):84.[doi:10.3969/j.issn.1001-0505.1992.05.012]
 Yang Tao,Cheng Wanli.The research on the Application of Urban Transportation Network General Capacity[J].Journal of Southeast University (Natural Science Edition),1992,22(4):84.[doi:10.3969/j.issn.1001-0505.1992.05.012]

备注/Memo

备注/Memo:
收稿日期: 2014-02-14.
作者简介: 许娟(1981—), 女, 博士, 讲师; 袁家斌(联系人), 男, 博士, 教授, 博士生导师, jbyuan@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(61103235,61170321)、中国博士后科学基金资助项目(2013M531353)、江苏省自然科学基金资助项目(BK20140823).
引用本文: 许娟, 陈汉武, 刘志昊, 等. 基于六量子态的高容量量子秘密共享方案[J].东南大学学报:自然科学版,2014,44(4):708-711. [doi:10.3969/j.issn.1001-0505.2014.04.005]
更新日期/Last Update: 2014-07-20