# [1]Bui Manh Tuan,陈云飞.平板表面裂纹应力强度因子和应力分布规律的确定[J].东南大学学报(自然科学版),2014,44(4):728-734.[doi:10.3969/j.issn.1001-0505.2014.04.009] 　Bui Manh Tuan,Chen Yunfei.Determination of stress intensity factors and stress distribution for surface crack in plates[J].Journal of Southeast University (Natural Science Edition),2014,44(4):728-734.[doi:10.3969/j.issn.1001-0505.2014.04.009] 点击复制 平板表面裂纹应力强度因子和应力分布规律的确定() 分享到： var jiathis_config = { data_track_clickback: true };

44

2014年第4期

728-734

2014-07-16

## 文章信息/Info

Title:
Determination of stress intensity factors and stress distribution for surface crack in plates

1东南大学机械工程学院, 南京 210081; 2濉和工业学院机械工程学院, 越南濉和 56000
Author(s):
1School of Mechanical Engineering, Southeast University, Nanjing 210018, China
2Faculty of Mechanical Engineering, Tuyhoa Industrial College, Tuyhoa 56000, Viet Nam

Keywords:

TH122
DOI:
10.3969/j.issn.1001-0505.2014.04.009

Abstract:
The stress intensity factor(SIF)and stress fields at the crack tips of a center crack and an edge crack are investigated by the finite element method(FEM)and the nodal displacement method. With the use of the 8 node isoparametric quadrilateral element and the quarter singular element, the influence of meshing density and crack length on the calculation accuracy is studied. The nodal density in sub-region around the crack tips is improved, which can ensure the calculation accuracy and save computing time. The code for calculating and analyzing stress intensity factor, stress fields and displacement fields at the crack tips for mode Ⅰ and mode Ⅱ SIFs of plate is written in Matlab/Simulink. The results of the FEM-code are compared with those of the exact methods. The results show that this proposed method can improve the calculation accuracy and the converging speed. The algorithm is reasonable and the results can be used to improve the precision of simulation results and guide engineering design.

## 参考文献/References:

[1] Liu P F, Hou S J, Chu J K, et al. Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique[J]. Composite Structures, 2011, 93(6): 1549-1560.
[2] Muthu N, Falzon B G, Maiti S K, et al. Modified crack closure integral technique for extraction of SIFs in meshfree methods[J]. Finite Elements in Analysis and Design, 2014, 78(5): 25-39.
[3] Okada Hiroshi, Ohata Shogo. Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element[J]. Engineering Fracture Mechanics, 2013, 109(9): 58-77.
[4] 刘明尧,柯梦龙,周祖德,等. 裂纹尖端应力强度因子的有限元计算方法分析[J]. 武汉理工大学学报, 2011, 33(6):116-121.
Liu Mingyao, Ke Menglong, Zhou Zude, et al. Analysis of finite element calculation methods for crack-tip stress intensity factor[J]. Journal of Wuhan University of Technology, 2011, 33(6): 116-121.(in Chinese)
[5] Fehl Barry D, Truman Kevin Z. An evaluation of fracture mechanics quarter-point displacement techniques used for computing stress intensity factors[J]. Engineering Structures, 1999, 21(5): 406-415.
[6] 张俊清. 高速列车空心车轴表面裂纹应力强度因子研究[D].北京:北京交通大学交通运输学院, 2011.
[7] Tracy Dennis M. Finite elements for determination of crack tip elastic stress intensity factors[J]. Engineering Fracture Mechanics, 1971, 3(3): 255-266.
[8] Wu Zhixue. The shape of a surface crack in a plate based on a given stress intensity factor distribution[J]. International Journal of Pressure Vessels and Piping, 2006, 83(3): 168-180.
[9] Tada H, Paris P, Irwin G. The stress analysis of cracks handbook [M]. Washington DC,USA: Washington University, 1957: 41-52.
[10] Brennan F P, Teh L S. Determination of crack tip stress intensity factors in complex geometries by composition of weight function solutions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(1): 1-7.
[11] Muthu N, Maiti S K, Falzon B G, et al. A comparison of stress intensity factors obtained through crack closure integral and other approaches using extended element-free Galerkin method[J]. Computational Mechanics, 2013, 52(3): 587-605.
[12] Salari R H, Rahimi D M, Rahimi P S, et al. Meshless EFG simulation of linear elastic fracture propagation under various loadings[J]. Arabian Journal for Science and Engineering, 2011, 36(7): 1381-1392.

## 相似文献/References:

[1]王莹,李兆霞,赵丽华.大跨钢桥钢箱梁损伤时变模型及疲劳可靠性评估[J].东南大学学报(自然科学版),2013,43(5):1017.[doi:10.3969/j.issn.1001-0505.2013.05.020]
Wang Ying,Li Zhaoxia,Zhao Lihua.Time-varying damage model and fatigue reliability assessment for box-girder of long-span steel bridge[J].Journal of Southeast University (Natural Science Edition),2013,43(4):1017.[doi:10.3969/j.issn.1001-0505.2013.05.020]
[2]张培伟.低频P波荷载下压电介质中共面裂纹的耦合断裂行为[J].东南大学学报(自然科学版),2013,43(5):1024.[doi:10.3969/j.issn.1001-0505.2013.05.021]
Zhang Peiwei.Coupled fracture behavior of two coplanar cracks in piezoelectric material under low-frequency P-wave[J].Journal of Southeast University (Natural Science Edition),2013,43(4):1024.[doi:10.3969/j.issn.1001-0505.2013.05.021]
[3]王鹏,张军辉,黄晓明.加宽工程路面开裂影响因素的数值分析[J].东南大学学报(自然科学版),2007,37(4):671.[doi:10.3969/j.issn.1001-0505.2007.04.025]
Wang Peng,Zhang Junhui,Huang Xiaoming.Analysis of influence factors of widening pavement cracking[J].Journal of Southeast University (Natural Science Edition),2007,37(4):671.[doi:10.3969/j.issn.1001-0505.2007.04.025]
[4]钟志鹏,万水.考虑裂纹接触摩擦的逐点Lagrange乘子法[J].东南大学学报(自然科学版),2012,42(5):994.[doi:10.3969/j.issn.1001-0505.2012.05.035]
Zhong Zhipeng,Wan Shui.Point-by-point Lagrange multiplier method for modeling interface cracks with contact and friction[J].Journal of Southeast University (Natural Science Edition),2012,42(4):994.[doi:10.3969/j.issn.1001-0505.2012.05.035]