[1]Bui Manh Tuan,陈云飞.平板表面裂纹应力强度因子和应力分布规律的确定[J].东南大学学报(自然科学版),2014,44(4):728-734.[doi:10.3969/j.issn.1001-0505.2014.04.009]
 Bui Manh Tuan,Chen Yunfei.Determination of stress intensity factors and stress distribution for surface crack in plates[J].Journal of Southeast University (Natural Science Edition),2014,44(4):728-734.[doi:10.3969/j.issn.1001-0505.2014.04.009]





Determination of stress intensity factors and stress distribution for surface crack in plates
Bui Manh Tuan12陈云飞1
1东南大学机械工程学院, 南京 210081; 2濉和工业学院机械工程学院, 越南濉和 56000
Bui Manh Tuan12 Chen Yunfei1
1School of Mechanical Engineering, Southeast University, Nanjing 210018, China
2Faculty of Mechanical Engineering, Tuyhoa Industrial College, Tuyhoa 56000, Viet Nam
裂纹 应力强度因子 节点位移法 网格细化
crack stress intensity factor nodal displacement method mesh refinement
基于有限元法(FEM)和节点位移方法,研究了在中间裂纹与侧裂纹处裂纹尖端的应力强度因子和应力场.使用 8节点四边形等参元和1/4节点退化单元,对网格密度和裂纹长度对计算精度的影响进行了研究.改善裂纹尖端周围子区域的节点密度,在保证结果精度的同时,可以节省计算时间.为了计算和分析裂纹尖端的应力强度因子、应力场与位移场,利用Matlab/Simulink编写了关于平板Ⅰ型和Ⅱ型应力强度因子的代码,并比较了有限元方法与精确方法的计算结果.结果表明,所提出的方法有助于提高计算精度与收敛速度,且算法合理,可以提高仿真精度并指导工程设计.
The stress intensity factor(SIF)and stress fields at the crack tips of a center crack and an edge crack are investigated by the finite element method(FEM)and the nodal displacement method. With the use of the 8 node isoparametric quadrilateral element and the quarter singular element, the influence of meshing density and crack length on the calculation accuracy is studied. The nodal density in sub-region around the crack tips is improved, which can ensure the calculation accuracy and save computing time. The code for calculating and analyzing stress intensity factor, stress fields and displacement fields at the crack tips for mode Ⅰ and mode Ⅱ SIFs of plate is written in Matlab/Simulink. The results of the FEM-code are compared with those of the exact methods. The results show that this proposed method can improve the calculation accuracy and the converging speed. The algorithm is reasonable and the results can be used to improve the precision of simulation results and guide engineering design.


[1] Liu P F, Hou S J, Chu J K, et al. Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique[J]. Composite Structures, 2011, 93(6): 1549-1560.
[2] Muthu N, Falzon B G, Maiti S K, et al. Modified crack closure integral technique for extraction of SIFs in meshfree methods[J]. Finite Elements in Analysis and Design, 2014, 78(5): 25-39.
[3] Okada Hiroshi, Ohata Shogo. Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element[J]. Engineering Fracture Mechanics, 2013, 109(9): 58-77.
[4] 刘明尧,柯梦龙,周祖德,等. 裂纹尖端应力强度因子的有限元计算方法分析[J]. 武汉理工大学学报, 2011, 33(6):116-121.
  Liu Mingyao, Ke Menglong, Zhou Zude, et al. Analysis of finite element calculation methods for crack-tip stress intensity factor[J]. Journal of Wuhan University of Technology, 2011, 33(6): 116-121.(in Chinese)
[5] Fehl Barry D, Truman Kevin Z. An evaluation of fracture mechanics quarter-point displacement techniques used for computing stress intensity factors[J]. Engineering Structures, 1999, 21(5): 406-415.
[6] 张俊清. 高速列车空心车轴表面裂纹应力强度因子研究[D].北京:北京交通大学交通运输学院, 2011.
[7] Tracy Dennis M. Finite elements for determination of crack tip elastic stress intensity factors[J]. Engineering Fracture Mechanics, 1971, 3(3): 255-266.
[8] Wu Zhixue. The shape of a surface crack in a plate based on a given stress intensity factor distribution[J]. International Journal of Pressure Vessels and Piping, 2006, 83(3): 168-180.
[9] Tada H, Paris P, Irwin G. The stress analysis of cracks handbook [M]. Washington DC,USA: Washington University, 1957: 41-52.
[10] Brennan F P, Teh L S. Determination of crack tip stress intensity factors in complex geometries by composition of weight function solutions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(1): 1-7.
[11] Muthu N, Maiti S K, Falzon B G, et al. A comparison of stress intensity factors obtained through crack closure integral and other approaches using extended element-free Galerkin method[J]. Computational Mechanics, 2013, 52(3): 587-605.
[12] Salari R H, Rahimi D M, Rahimi P S, et al. Meshless EFG simulation of linear elastic fracture propagation under various loadings[J]. Arabian Journal for Science and Engineering, 2011, 36(7): 1381-1392.


 Wang Ying,Li Zhaoxia,Zhao Lihua.Time-varying damage model and fatigue reliability assessment for box-girder of long-span steel bridge[J].Journal of Southeast University (Natural Science Edition),2013,43(4):1017.[doi:10.3969/j.issn.1001-0505.2013.05.020]
 Zhang Peiwei.Coupled fracture behavior of two coplanar cracks in piezoelectric material under low-frequency P-wave[J].Journal of Southeast University (Natural Science Edition),2013,43(4):1024.[doi:10.3969/j.issn.1001-0505.2013.05.021]
 Wang Peng,Zhang Junhui,Huang Xiaoming.Analysis of influence factors of widening pavement cracking[J].Journal of Southeast University (Natural Science Edition),2007,37(4):671.[doi:10.3969/j.issn.1001-0505.2007.04.025]
 Zhong Zhipeng,Wan Shui.Point-by-point Lagrange multiplier method for modeling interface cracks with contact and friction[J].Journal of Southeast University (Natural Science Edition),2012,42(4):994.[doi:10.3969/j.issn.1001-0505.2012.05.035]


收稿日期: 2013-12-17.
作者简介: Bui Manh Tuan(1977—),男,博士生;陈云飞(联系人),男,博士,教授,博士生导师,yunfeichen@seu.edu.cn.
引用本文: Bui Manh Tuan,陈云飞.平板表面裂纹应力强度因子和应力分布规律的确定[J].东南大学学报:自然科学版,2014,44(4):728-734. [doi:10.3969/j.issn.1001-0505.2014.04.009]
更新日期/Last Update: 2014-07-20