[1]李旭,宋翔,张为公.基于扩展卡尔曼滤波的车辆状态可靠估计[J].东南大学学报(自然科学版),2014,44(4):740-744.[doi:10.3969/j.issn.1001-0505.2014.04.011]
 Li Xu,Song Xiang,Zhang Weigong.Reliable vehicle state estimation based on improved extended Kalman filter[J].Journal of Southeast University (Natural Science Edition),2014,44(4):740-744.[doi:10.3969/j.issn.1001-0505.2014.04.011]
点击复制

基于扩展卡尔曼滤波的车辆状态可靠估计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第4期
页码:
740-744
栏目:
交通运输工程
出版日期:
2014-07-16

文章信息/Info

Title:
Reliable vehicle state estimation based on improved extended Kalman filter
作者:
李旭宋翔张为公
东南大学仪器科学与工程学院, 南京210096
Author(s):
Li Xu Song Xiang Zhang Weigong
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
车辆运行状态估计 改进卡尔曼滤波 低成本传感器 汽车主动安全
Keywords:
vehicle state estimation improved Kalman filtering low-cost sensor vehicle active safety
分类号:
U461.3
DOI:
10.3969/j.issn.1001-0505.2014.04.011
摘要:
为实现高机动工况下车辆状态的可靠估计,提出了一种基于改进的扩展卡尔曼滤波的车辆运行状态估计方法.首先建立基于非线性车辆动力学的系统状态模型,该模型分别以低成本的车载轮速和方向盘转角传感器信息作为系统的观测量和外部输入量;然后通过改进的卡尔曼滤波递推算法高精度地推算出汽车的关键运行状态.仿真试验表明,所提出的方法既可适应一般机动环境也可适应较高机动环境.此外,该方法可显著提高直测量的精度,并可实现对质心侧偏角、侧向速度等难以直测量的准确估计,质心侧偏角估计误差小于3×10-3 rad,速度估计精度小于0.1 m/s.
Abstract:
To realize the reliable estimation of vehicle state in critical driving maneuvers, an estimation method based on improved extended Kalman filter is developed. First, the system state model is established based on the nonlinear vehicle dynamics, and the information determined by the low-cost wheel speed sensors and that by the steering wheel angle sensor are used as the observation and the system input, respectively. Then through improving the extended Kalman filtering recursion algorithm, the key states of a vehicle are determined. The simulation results demonstrate that the proposed method can adapt to both common and critical driving-maneuvers situations. Besides, it can significantly improve the accuracy of the states that can be directly measured and can also accurately estimate the states which are difficult to measure directly such as sideslip angle and lateral speed. The estimation errors of sideslip angle and velocity are less than 3×10-3 rad and 0.1 m/s, respectively.

参考文献/References:

[1] 余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报, 2009, 45(5):20-33.
  Yu Zhuoping, Gao Xiaojie. Review of vehicle state estimation problem under driving situation[J].Journal of Mechanical Engineering, 2009, 45(5):20-33.
[2] Leung K T, Whildborne J F, Purdy D, et al. A review of ground vehicle dynamic state estimations utilising GPS/INS [J]. Vehicle Syst Dyn,2011, 49(1/2):29-58.
[3] Bevly D M, Ryu J H, Gerdes J C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness[J]. IEEE Trans Intell Transport Syst, 2006, 7(4): 483-493.
[4] Chumsamutr R, Fujioka T, Abe M. Sensitivity analysis of side-slip angle observer based on a tire model[J]. Vehicle Syst Dyn,2006, 44(7): 513-527.
[5] Rajamani R, Grogg J A, Lew J Y. Development and experimental evaluation of a slip angle estimator for vehicle stability control[J]. IEEE Trans Control Syst Technol, 2009, 17(1): 78-88.
[6] Chen B C, Hsieh F C. Sideslip angle estimation using extended Kalman filter[J]. Vehicle Syst Dyn,2008, 46(1):353-364.
[7] Baffet G, Charara A, Lechner D. Estimation of vehicle sideslip, tire force and wheel cornering stiffness[J]. Control Eng Pract, 2009, 17(11): 1255-1264.
[8] Tuononen A J. Vehicle lateral state estimation based on measured tyre forces[J]. Sensors, 2009, 9(11): 8761-8775.
[9] 林棻,赵又群.汽车侧偏角估计方法比较[J]. 南京理工大学学报:自然科学版,2009,30(1):122-126.
  Lin Fen,Zhao Youqun. Comparison of methods for estimating vehicle side slip angle[J]. Journal of Nanjing University of Science and Technology:Natural Science,2009,30(1):122-126.
[10] Zong C F, Hu D, Zheng H Y. Dual extended Kalman filter for combined estimation of vehicle state and road friction[J].Chinese Journal of Mechanical Engineering, 2013, 26(2):313-324.
[11] Smith D E, Starkey J M. Effects of model complexity on the performance of automated vehicle steering controllers: model development, validation and comparison[J]. Vehicle Syst Dyn,1995,24(2):163-181.
[12] Li L, Wang F Y, Zhou Q Z. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control[J]. IEEE Trans Intelli Transport Syst, 2006,7(1):1-19.
[13] Farrell J A, Givargis T D, Barth M J. Real-time differential carrier phase GPS-aided INS[J]. IEEE Trans Control Syst Technol, 2000,8(4):709-720.

备注/Memo

备注/Memo:
收稿日期: 2014-02-25.
作者简介: 李旭(1975—),男,博士,副教授,博士生导师, lixu.mail@163.com.
基金项目: 国家自然科学基金资助项目(61273236)、江苏省自然科学基金资助项目(BK2010239)、高等学校博士学科点专项科研基金资助项目(200802861061).
引用本文: 李旭,宋翔,张为公.基于扩展卡尔曼滤波的车辆状态可靠估计[J].东南大学学报:自然科学版,2014,44(4):740-744. [doi:10.3969/j.issn.1001-0505.2014.04.011]
更新日期/Last Update: 2014-07-20