[1]梁彩华,汪峰,吕艳,等.翅片表面特性对结霜过程影响的实验研究[J].东南大学学报(自然科学版),2014,44(4):745-750.[doi:10.3969/j.issn.1001-0505.2014.04.012]
 Liang Caihua,Wang Feng,Lü Yan,et al.Experimental study on effect of surface characteristic of fin on frost formation[J].Journal of Southeast University (Natural Science Edition),2014,44(4):745-750.[doi:10.3969/j.issn.1001-0505.2014.04.012]
点击复制

翅片表面特性对结霜过程影响的实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第4期
页码:
745-750
栏目:
能源与动力工程
出版日期:
2014-07-16

文章信息/Info

Title:
Experimental study on effect of surface characteristic of fin on frost formation
作者:
梁彩华1汪峰1吕艳12范晨1吴春晓3张小松1张友法3
1东南大学能源与环境学院, 南京 210096; 2江苏华晟建筑设计有限公司, 徐州 221006; 3东南大学材料科学与工程学院, 南京 210096
Author(s):
Liang Caihua1 Wang Feng1 Lü Yan12 Fan Chen1Wu Chunxiao3 Zhang Xiaosong1 Zhang Youfa3
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Jiangsu Huasheng Architecture Design Co., Ltd., Xuzhou 221006, China
3School of Materials Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
翅片 表面特性 结霜 可视化
Keywords:
fin surface characteristic frost formation visualization
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2014.04.012
摘要:
为研究翅片表面特性对空气源热泵结霜的影响,构建了翅片结霜实验平台,对接触角不同的4种翅片表面(亲水性铝翅片、普通铝翅片、疏水性铝翅片、超疏水性铝翅片)的结霜过程细微观特征进行了可视化研究,获得了翅片表面特性对结霜过程细微观物理特征及霜层热工特性的影响规律.结果表明,在霜晶生长初期,接触角越大,凝结形成的液滴粒径越小,分布越稀疏,液滴开始冻结的时间越滞后.霜层生长过程中,接触角大的表面霜晶相对矮小且疏松,枝晶分布不均匀,而接触角小的表面霜晶纤长且致密,枝晶多且分布均匀.随着接触角的增大,霜层的高度和导热系数减小,表面温度降低.超疏水性表面霜高比亲水性表面减少了45%,接触角越大的表面其抑霜效果越明显.
Abstract:
In order to study the effect of the surface characteristic of fin on frost formation of an air source heat pump, a frosting experimental system for fin was developed. The microscopic characteristics of frost formation of four different fin surfaces with different contact angles were investigated visually. The effect laws of the surface characteristic of fin on the microscopic characteristics of frost formation and the thermal performances of frost layer were obtained. The experimental results show that the sizes of condensate water droplets are smaller, the distribution is sparser and the freezing time of water droplets is longer on the fin surface with bigger contact angle during the initial period of frost crystals growth. During the process of frost layer growth, frost crystals are relatively small, loose and unevenly distributed on the fin surface with big contact angle, while they are long, dense and evenly distributed on the fin surface with small contact angle. The height, surface temperature and thermal conductivity of the frost layer all decrease with the increase of the contact angle. The height of the frost layer of the superhydrophobic surface decreases by 45% compared with that of the hydrophilic surface. The anti-frosting performance is better when the contact angle of the fin surface is bigger.

参考文献/References:

[1] Lenic K, Trp A, Frankovic B. Prediction of an effective cooling output of the fin-and-tube heat exchanger under frosting conditions[J]. Applied Thermal Engineering, 2009, 29(11/12): 2534-2543.
[2] Hayashi Y, Aoki A, Adachi S, et al. Study of frost properties correlating with frost formation types[J]. Journal of Heat Transfer, 1977, 99(2): 239-245.
[3] Wu J, Ouyang G, Hou P, et al. Experimental investigation of frost formation on a parallel flow evaporator[J]. Applied Energy, 2011, 88(5): 1549-1556.
[4] Rahman M A, Jacobi A M. Effects of microgroove geometry on the early stages of frost formation and frost properties[J]. Applied Thermal Engineering, 2013, 56(1/2): 91-100.
[5] Cui J, Li W Z, Liu Y, et al. A new time-and space-dependent model for predicting frost formation[J]. Applied Thermal Engineering, 2011, 31(4): 447-457.
[6] Liu Y M, Liu Z L, Huang L Y, et al. Fractal model for simulation of frost formation and growth[J]. Science China Technological Sciences, 2010, 53(3): 807-812.
[7] 姚杨, 姜益强, 马最良. 翅片管换热器结霜时霜密度和厚度的变化[J]. 工程热物理学报, 2003, 24(6): 1040-1042.
  Yao Yang, Jiang Yiqing, Ma Zuiliang. Change of frost density and thickness for finned-tube heat exchanger under frosting[J]. Journal of Engineering Thermophysics, 2003, 24(6): 1040-1042.(in Chinese)
[8] 刘中良, 黄玲艳, 勾昱君, 等. 结霜现象及抑霜技术的研究进展[J].制冷学报, 2010, 31(4): 1-5.
  Liu Zhongliang, Huang Lingyan, Gou Yujun, et al. A review on frost formation and anti-frosting technology[J]. Journal of Refrigeration, 2010, 31(4): 1-5.(in Chinese)
[9] Liu Z L, Zhang X H, Wang H Y, et al. Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions[J]. Experimental Thermal and Fluid Science, 2007, 31(7): 789-794.
[10] Rykaczewski K, Anand S, Subramanyam S B, et al. Mechanism of frost formation on lubricant-impregnated surfaces[J]. Experimental Thermal and Fluid Science, 2013, 29(17): 5230-5238.
[11] Lee H, Shin J, Ha S, et al. Frost formation on a plate with different surface hydrophilicity[J]. International Journal of Heat and Mass Transfer, 2004, 47(22): 4881-4893.
[12] 丁云飞, 殷帅, 廖云丹, 等. 纳微结构疏水表面结霜过程及抑霜特性[J]. 化工学报, 2012, 63(10): 3213-3219.
  Ding Yunfei, Yin Shuai, Liao Yundan, et al. Frosting mechanism and suppression on nano/micro-structured hydrophobic surfaces[J]. CIESC Journal, 2012, 63(10): 3213-3219.(in Chinese)
[13] Kim S, Kim K. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8): 1-5.
[14] 徐文骥, 宋金龙,孙晶,等. 铝基体超疏水表面的抗结冰结霜效果分析[J]. 低温工程, 2010(6): 11-15.
  Xu Wenji, Song Jinlong, Sun Jing, et al. Research in ice and frost repellency of superhydrophobic surfaces on aluminum[J]. Cryogenics, 2010(6): 11-15.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2013-12-11.
作者简介: 梁彩华(1979—),男,博士,研究员,博士生导师,caihualiang@163.com.
基金项目: “十二五”国家科技支撑计划资助项目(2011BAJ03B14)、国家自然科学基金资助项目(51106023)、江苏省自然科学基金重点资助项目(BK2010029).
引用本文: 梁彩华,汪峰,吕艳,等.翅片表面特性对结霜过程影响的实验研究[J].东南大学学报:自然科学版,2014,44(4):745-750. [doi:10.3969/j.issn.1001-0505.2014.04.012]
更新日期/Last Update: 2014-07-20