[1]陈忠林,王斌远,李金春子,等.普通硅酸盐水泥及碱激发水泥固定铬渣的毒性浸出比较[J].东南大学学报(自然科学版),2014,44(4):871-875.[doi:10.3969/j.issn.1001-0505.2014.04.034]
 Chen Zhonglin,Wang Binyuan,Li Jinchunzi,et al.Comparison of toxicity characteristic leaching from solidified chromite ore processing residue by ordinary Portland cement and alkali-activated slag cement[J].Journal of Southeast University (Natural Science Edition),2014,44(4):871-875.[doi:10.3969/j.issn.1001-0505.2014.04.034]
点击复制

普通硅酸盐水泥及碱激发水泥固定铬渣的毒性浸出比较()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第4期
页码:
871-875
栏目:
环境科学与工程
出版日期:
2014-07-16

文章信息/Info

Title:
Comparison of toxicity characteristic leaching from solidified chromite ore processing residue by ordinary Portland cement and alkali-activated slag cement
作者:
陈忠林王斌远李金春子沈吉敏樊磊涛
哈尔滨工业大学市政环境工程学院, 哈尔滨150090; 哈尔滨工业大学城市水资源与水环境国家重点实验室, 哈尔滨150090
Author(s):
Chen Zhonglin Wang Binyuan Li Jinchunzi Shen Jimin Fan Leitao
School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
关键词:
铬渣 固定/稳定 普通硅酸盐水泥 矿渣 碱激发水泥
Keywords:
chromite ore processing residue(COPR) solidification/stabilization ordinary Portland cement ground granulated blast furnace slag alkali-activated slag cement
分类号:
X758
DOI:
10.3969/j.issn.1001-0505.2014.04.034
摘要:
为了比较普通硅酸盐水泥、掺加矿渣的硅酸盐水泥和碱激发水泥3种胶凝材料对铬渣的稳定固定化效果,采用硫酸硝酸法、TCLP毒性浸出法以及半动态浸出法对固定化试件总铬和六价铬的浸出规律进行实验研究.结果表明,铬渣的掺入对普通硅酸盐水泥水化反应产生负面影响,当铬渣掺量从20%增加到45%时,试件抗压强度由50.4 MPa下降到25.8 MPa;浸出液中总铬和六价铬的浓度随着铬渣掺量的增加而增加.用矿渣代替部分普通硅酸盐水泥,能够提高对铬渣中铬的固定效果,当矿渣掺量为45%时,固定效果最佳.碱矿渣水泥对低掺量的铬渣有较好的固定效果,但当铬渣掺量超过35%时,浸出液中铬的浓度大幅度增加.
Abstract:
In order to compare the immobilization of chromium in the chromite ore processing residue(COPR)by ordinary Portland cement, ordinary Portland cement mixed with ground granulated blast furnace slag(GGBFS)and alkali-activated slag cement, the sulfuric acid and nitric acid method, toxicity characteristic leaching procedure(TCLP)and semi-dynamic leaching test are used to assess the leaching behaviors of total chromium and hexavalent chromium from solidified specimens. The results show that the addition of COPR has an adverse effect on the hydration reaction of ordinary Portland cement. The compressive strength of the solidified specimen decreases from 50.4 to 25.8 MPa when the content content increases from 20% to 45%. The concentrations of the total chromium and hexavalent chromium in the leachate increase with the increase of the COPR content. Partly replacement of ordinary Portland cement by GGBFS can improve the effect of fixing chromium in COPR. When the GGBFS content is 45%, the immobilization of chromium is the best. Alkali-activated slag cement exerts a better solubility control on chromium with low content of COPR. However, when the COPR content is more than 35%, the leaching concentration of chromium increases significantly.

参考文献/References:

[1] Jagupilla S C, Moon D H, Wazne M, et al. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate [J]. Journal of Hazardous Materials, 2009, 168(1): 121-128.
[2] Batchelor B. Overview of waste stabilization with cement[J]. Waste Management, 2006, 26(7): 689-698.
[3] Conner J R, Hoeffner S L. The history of stabilization/solidification technology [J]. Critical Reviews in Environmental Science and Technology, 1998, 28(4): 325-396.
[4] US Environmental Protection Agency. Method 3060A alkaline digestion for hexavalent chromium [S]. Alexandria, VA, USA: National Technical Information Service,1996.
[5] US Environmental Protection Agency. Method 7196A Chromium, hexavalent(colorimetric)[S]. Alexandria, VA,USA:National Technical Information Service,1992.
[6] US Environmental Protection Agency. Method 3051A Microwave assisted acid digestion of sediments, sludges, soils, and oils [S]. Alexandria, VA,USA:National Technical Information Service,2007.
[7] US Environmental Protection Agency. Method 6010C Inductively coupled plasma-atomic emission spectroscopy(ICP-AES)[S]. Alexandria, VA,USA:National Technical Information Service,2007.
[8] 国家环境保护总局. GB 5085.3—2007 危险废物鉴别标准:浸出毒性鉴别[S]. 北京:中国环境科学出版社, 2007.
[9] 国家环境保护总局. HJ/T 299—2007 固体废物:浸出毒性浸出方法:硫酸硝酸法[S]. 北京:中国环境科学出版社, 2007.
[10] US Environmental Protection Agency. Method 1311 Toxicity characteristic leaching procedure [S]. Alexandria, VA,USA:National Technical Information Service,2007.
[11] American Nuclear Society. ANSI/ANS 16.1-2003 Measurement of the leachability of solidified low-level radioactive wastes by a short-term test procedure [S]. Hinsdale, Illinois, USA: American Nuclear Society, 2003.
[12] 国家环境保护总局. HJ/T 301—2007 铬渣污染治理环境保护技术规范(暂行)[S]. 北京:中国环境科学出版社, 2007.
[13] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation [J]. Engineering Geology, 2001, 60(1/2/34): 193-207.
[14] Allan M L, Kukacka L E. Blast furnace slag-modified grouts for in situ stabilization of chromium contaminated soil [J]. Waste Management, 1995, 15(3): 193-202.
[15] Glasser F P. Fundamental aspects of cement solidification and stabilisation [J]. Journal of Hazardous Materials, 1997,52(2/3): 151-170.
[16] Roy A. Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation [J]. Cement and Concrete Research, 2009,39(8): 659-663.
[17] 杨胜多. 碱激发胶凝材料发展趋势[J]. 科技信息, 2010(17): 253.
  Yang Shengduo. Trends of alkali-activated cementitious material [J]. Science & Technology Information, 2010(17): 253.(in chinese)
[18] Dutré V, Vandecasteele C. An evaluation of the solidification/stabilisation of industrial arsenic containing waste using extraction and semi-dynamic leach tests [J]. Waste Management, 1996, 16(7): 625-631.

备注/Memo

备注/Memo:
收稿日期: 2014-02-16.
作者简介: 陈忠林(1967—),男,博士,教授,博士生导师,zhonglinchen@hit.edu.cn.
基金项目: 哈尔滨工业大学城市水资源与水环境国家重点实验室自主课题资助项目(2014DX02).
引用本文: 陈忠林,王斌远,李金春子,等.硅酸盐水泥及碱矿渣水泥固定铬渣的毒性浸出比较[J].东南大学学报:自然科学版,2014,44(4):871-875. [doi:10.3969/j.issn.1001-0505.2014.04.034]
更新日期/Last Update: 2014-07-20