[1]周正东,陈元华,余子丽.一种基于实时运动跟踪的自适应dMLC门控放射治疗方法[J].东南大学学报(自然科学版),2014,44(5):917-923.[doi:10.3969/j.issn.1001-0505.2014.05.008]
 Zhou Zhengdong,Chen Yuanhua,Yu Zili.Adaptive dMLC gating radiotherapy based on real-time motion tracking[J].Journal of Southeast University (Natural Science Edition),2014,44(5):917-923.[doi:10.3969/j.issn.1001-0505.2014.05.008]
点击复制

一种基于实时运动跟踪的自适应dMLC门控放射治疗方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第5期
页码:
917-923
栏目:
生物医学工程
出版日期:
2014-09-20

文章信息/Info

Title:
Adaptive dMLC gating radiotherapy based on real-time motion tracking
作者:
周正东陈元华余子丽
南京航空航天大学核科学与工程系, 南京 210016
Author(s):
Zhou Zhengdong Chen Yuanhua Yu Zili
Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
放射治疗 呼吸运动 肿瘤运动补偿 自适应dMLC门控
Keywords:
radiotherapy respiratory motion tumor motion compensation adaptive dynamic multi-leaf collimator(dMLC)gating
分类号:
R318;TP391
DOI:
10.3969/j.issn.1001-0505.2014.05.008
摘要:
提出了一种新颖的自适应动态多叶准直器(dMLC)门控放射治疗方法.通过实时跟踪肿瘤和危及器官(OAR)的运动来控制dMLC叶片的开启与关闭,仅当肿瘤和OAR在射野视观(BEV)内没有重叠时才开启治疗射束进行治疗.4组肿瘤-OAR同步跟踪数据的回顾性仿真实验果表明,肿瘤和OAR的运动模式和相对位置是影响所有指标的最主要因素.在不同的肿瘤-OAR运动模式下,门控治疗占空比高达96.71%,也可能仅有14.12%.增加BEV内的横向距离可提高占空比,并使OAR受照体积减少;增加肿瘤外放边界则具有相反的效果.所提方法具有较好的OAR保护能力,对于占空比较低的情况尤为明显,可以避免高达77.71%的直接照射.
Abstract:
A novel adaptive dynamic multi-leaf collimator(dMLC)gating radiotherapy is proposed. The leaf opening/closing of dMLC is controlled by the real-time tracking of the tumor and organ at risk(OAR). The treatment beam turns on only when there is no overlapping between OAR and tumor in beam’s eye view(BEV). The experimental results of the retrospective simulations of four synchronous tracking data show that the tumor and OAR motion patterns and their relative positions are the dominant influential factors. For different tumor-OAR motion patterns, the duty cycle can be up to 96.71% and yet may be only 14.12%. The increase of the transverse distance in BEV can improve the duty cycle and reduce the irradiated OAR volume; whereas, the increase of the tumor external boundary exhibits an opposite influence. This proposed technique can provide good OAR protection, especially for cases with low duty cycle, in which as high as 77.71% direct irradiation to OAR can be spared.

参考文献/References:

[1] Haas M L. Advances in radiation therapy for lung cancer [J]. Semin Oncol Nurs, 2008, 24(1): 34-40.
[2] Butler L E, Forster K M, Stevens C W, et al. Dosimetric benefits of respiratory gating: a preliminary study [J]. J Appl Clin Med Phys, 2004, 5(1): 16-24.
[3] Guckenberger M, Krieger T, Richter A, et al. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy [J]. Radiotherapy and Oncology, 2008, 91(3): 288-295.
[4] Wong J W, Sharpe M B, Jaffray D A, et al. The use of active breathing control(ABC)to reduce margin for breathing motion [J]. International Journal of Radiation Oncology, Biology, Physics, 1999, 44(4): 911-919.
[5] Nissen H D, Appelt A L. Improved heart, lung and target dose with deep inspiration breath hold in a large clinical series of breast cancer patients [J]. Radiotherapy and Oncology, 2013, 106(1): 28-32.
[6] Bouilhol G, Ayadi M, Rit S, et al. Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study [J]. Phys Med, 2013, 29(4): 333-340.
[7] Korreman S S, Pedersen A N, N?ttrup T J, et al. Breathing adapted radiotherapy for breast cancer: Comparison of free breathing gating with the breath-hold technique [J]. Radiotherapy and Oncology, 2005, 76(3): 311-318.
[8] Pepin E W, Wu H, Shirato H. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy [J]. Med Phys, 2011, 38(4): 1912-1918.
[9] Hau E, Rains M, Pham T, et al. Potential benefits and pitfalls of respiratory-gated radiotherapy in the treatment of thoracic malignancy [J]. Asia-Pacific Journal of Clinical Oncology, 2014, 10(2): e13-e20.
[10] Pepin E W, Wu H, Shirato H. Use of dMLC for implementation of dynamic respiratory-gated radiation therapy [J]. Med Phys, 2013, 40(10): 101708-1-101708-5.
[11] Sun B, Rangaraj D, Papiez L, et al. Target tracking using DMLC for volumetric modulated arc therapy: a simulation study [J]. Med Phys, 2010, 37(12): 6116-6124.
[12] Poulsen P R, Cho B, Sawant A, et al. Dynamic MLC tracking of moving targets with a single kV imager for 3D conformal and IMRT treatments [J]. Acta Oncol, 2010, 49(7): 1092-1100.
[13] Shirato H, Shimizu S, Kitamura K, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor [J]. International Journal of Radiation Oncology, Biology, Physics, 2000, 48(2): 435-442.

相似文献/References:

[1]翁学军,罗立民,汪家旺.一种电子输运的矢量化Monte Carlo模拟方法[J].东南大学学报(自然科学版),2002,32(2):193.[doi:10.3969/j.issn.1001-0505.2002.02.010]
 Weng Xuejun,Luo Limin,Wang Jiawang.Vectorized Monte Carlo simulation on the transport of electrons[J].Journal of Southeast University (Natural Science Edition),2002,32(5):193.[doi:10.3969/j.issn.1001-0505.2002.02.010]

备注/Memo

备注/Memo:
收稿日期: 2014-05-13.
作者简介: 周正东(1969—),男,博士,副教授,zzd_msc@nuaa.edu.cn.
引用本文: 周正东,陈元华,余子丽.一种基于实时运动跟踪的自适应dMLC门控放射治疗方法[J].东南大学学报:自然科学版,2014,44(5):917-923. [doi:10.3969/j.issn.1001-0505.2014.05.008]
更新日期/Last Update: 2014-09-20