[1]吴洪亮,李晓红,朱成丽,等.高压输电导线局部破损-断裂机理及风险评估[J].东南大学学报(自然科学版),2014,44(5):935-940.[doi:10.3969/j.issn.1001-0505.2014.05.011]
 Wu Hongliang,Li Xiaohong,Zhu Chengli,et al.Mechanism and risk assessment of conductors’ localized breakage-fracture in high-voltage transmission lines[J].Journal of Southeast University (Natural Science Edition),2014,44(5):935-940.[doi:10.3969/j.issn.1001-0505.2014.05.011]
点击复制

高压输电导线局部破损-断裂机理及风险评估()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第5期
页码:
935-940
栏目:
材料科学与工程
出版日期:
2014-09-20

文章信息/Info

Title:
Mechanism and risk assessment of conductors’ localized breakage-fracture in high-voltage transmission lines
作者:
吴洪亮1李晓红1朱成丽1窦洪2
1武汉大学动力与机械学院, 武汉 430072; 2广东电网公司电力科学研究院, 广州 510080
Author(s):
Wu Hongliang1 Li Xiaohong1 Zhu Chengli1 Dou Hong2
1School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
2Electric Power Research Institute, Guangdong Power Grid Corporation, Guangzhou 510080, China
关键词:
风险评估 破损程度 张力 电流 环境温度 散热系数
Keywords:
risk assessment breakage degree tensile force current ambient temperature heat transfer coefficient
分类号:
TG1;X93
DOI:
10.3969/j.issn.1001-0505.2014.05.011
摘要:
为了实现高压输电自由导线基于风险指引的检修,根据机械结构可靠性理论,建立了铝股局部破损-导线断裂的风险评估模型;基于该模型,定量评估了破损程度、导线张力、电流负荷、环境温度、散热系数和时间等因素对断线风险概率的影响;并由风险概率分级区间反演计算出了各因素的分级预警区间.研究结果表明:各因素条件下的断线风险概率均与时间成半抛物线形关系,风险概率骤增所对应的阈值分别为导线破损达13.23%以上、张力大于30%极限拉断力、电流负荷大于500 A、环境温度大于35 ℃以及散热系数小于20 W/(m2·K).各风险因素的重要度排序为破损程度、导线张力、电流负荷、环境温度、散热系数.破损程度、导线张力存在Ⅰ,Ⅱ,Ⅲ,Ⅳ级预警区间,电流负荷存在Ⅰ,Ⅱ级预警区间,而常规条件的环境温度和散热系数一般只存在Ⅰ级预警区间.所建立的定量风险评估模型及分级方法可为输电导线运行安全管理提供参考.
Abstract:
The risk-based maintenance of high-voltage conductors was implemented by establishing the risk assessment model from aluminum strands’ localized breakage to conductors’ fracture according to the mechanical structure reliability theory. Quantitative relationships between fracture risk probabilities and breakage degree, tensile force, current, ambient temperature, heat transfer coefficient and duration time were assessed respectively based on this model. And the graded warning intervals of these risk factors were calculated according to the risk probability ranking intervals. The results show that the conductors’ fracture risk probabilities increase with time in a half parabolic manner. And the threshold values corresponding to the risk probabilities are over 13.23% for breakage degree, 30% ultimate tensile strength for tensile force, 500 A for current, 35 ℃ for ambient temperature, and below 20 W/(m2·K)for heat transfer coefficient. The importance ranking of these risk factors is as follows: breakage degree, tensile force, current, ambient temperature, and heat transfer coefficient. There are level Ⅰ, Ⅱ, Ⅲ, Ⅳ warning interval in both breakage degree and tensile force, and level Ⅰ, Ⅱ warning interval in current. While in conventional environment, there are only level Ⅰ warning intervals in ambient temperature and heat transfer coefficient. The established quantitative risk assessment model and ranking method can provide reference for the operation safety management of transmission line conductors.

参考文献/References:

[1] Chen Guohong, Wang Xu, Wang Jiaqing, et al. Damage investigation of the aged aluminum cable steel reinforced(ACSR)conductors in a high-voltage transmission line[J]. Engineering Failure Analysis, 2012, 19(1): 13-21.
[2] 王煦.钢芯铝绞(ACSR)架空导线微动疲劳及其运行状态评估[D].合肥:合肥工业大学材料科学与工程学院,2012.
[3] 周少玲,胡晓黎,岳增武.220 kV钢芯铝绞线断股事故化学分析[J].腐蚀与防护,2011,32(5):392-394.
  Zhou Shaoling, Hu Xiaoli, Yue Zengwu. Chemical analysis of breaking accident of 220 kV aluminum conductor steel reinforced cable[J]. Corrosion & Protection, 2011, 32(5): 392-394.(in Chinese)
[4] 朱光荭.输电线微风振动与疲劳寿命[D].哈尔滨:哈尔滨工业大学航天学院,2011.
[5] Fadel A A, Rosa D, Murca L B, et al. Effect of high mean tensile stress on the fretting fatigue life of an ibis steel reinforced aluminium conductor[J]. International Journal of Fatigue, 2011, 42(9): 24-34.
[6] 赵新泽,高伟,赵美云,等.干燥和酸性条件下钢芯铝绞线磨损特性研究[J].摩擦学学报,2011,31(6):616-621.
  Zhao Xinze, Gao Wei, Zhao Meiyun, et al. Wear characteristics of aluminum cable steel reinforced(ACSR)under dry and acidic condition[J]. Tribology, 2011, 31(6): 616-621.(in Chinese)
[7] 国家能源局.DL/T 741—2010架空输电线路运行规程[S].北京:中国电力出版社,2010.
[8] Jiang Xingliang, Xia Yunfeng, Hu Jianlin, et al. An S-transform and support vector machine(SVM)-based online method for diagnosing broken strands in transmission lines[J]. Energies, 2011, 4(9): 1278-1300.
[9] 吴功平,肖晓晖,申瑞刚.高压输电导线的损伤检测与故障诊断[J].仪器仪表学报,2006,27(10):1204-1208.
  Wu Gongping, Xiao Xiaohui, Shen Ruigang. Damaged detection and fault diagnosis for high-voltage transmission line[J]. Chinese Journal of Scientific Instrument, 2006, 27(10): 1204-1208.(in Chinese)
[10] 蒋锡健,吴功平,肖晓晖,等.高压输电线路巡检数据库及其管理系统[J].电力建设,2006,27(8):65-68.
  Jiang Xijian, Wu Gongping, Xiao Xiaohui, et al. Database for HV transmission line routing inspection and its management system[J]. Electric Power Construction, 2006, 27(8): 65-68.(in Chinese)
[11] Cimini C A Jr, Fonseca B Q A. Temperature profile of progressive damaged overhead electrical conductors[J]. Electrical Power and Energy System, 2013, 49(1): 280-286.
[12] 谢里阳,王正,周金宇,等.机械可靠性基本理论与方法[M].北京:科学出版社,2009:1-3,54-73.
[13] 郑恒,周海京.概率风险评价[M].北京:国防工业出版社,2011:173-174.
[14] 张忠亭.架空输电线路设计原理[M].北京:中国电力出版社,2010:20-22,211-225.
[15] 崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,2009:194-208.
[16] 石德珂.材料科学基础[M].北京:机械工业出版社,2006:355-365.
[17] Morgan V T. Effect of elevated temperature operation on the tensile strength of overhead conductors [J]. IEEE Transactions on Power Delivery,1996, 11(1): 345-352.
[18] Jakl F, Jakl A. Effect of elevated temperatures on mechanical properties of overhead conductors under steady state and short-circuit conditions[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 242-246.
[19] 余虹红,俞成彪,李瑞.电力线路器材应用与检测[M].北京:中国电力出版社,2007:22-23.
[20] 国家电网公司.输变电设备风险评价导则(试行)[S].北京:中国电力出版社,2008.
[21] 广东电网公司.设备状态评价与风险评估技术导则[S].广州:广东电网公司,2010.
[22] 国家能源局.DL/T 393—2010输变电设备状态检修试验规程[S].北京:中国标准出版社,2010.

备注/Memo

备注/Memo:
收稿日期: 2014-04-26.
作者简介: 吴洪亮(1985—),男,博士生;李晓红(联系人),女,博士,教授,博士生导师,LXHong@whu.edu.cn.
基金项目: 广东电网公司科技资助项目(K-GD2012-386)、中央高校基本科研业务费专项资金资助项目(274717).
引用本文: 吴洪亮,李晓红,朱成丽,等.高压输电导线局部破损-断裂机理及风险评估[J].东南大学学报:自然科学版,2014,44(5):935-940. [doi:10.3969/j.issn.1001-0505.2014.05.011]
更新日期/Last Update: 2014-09-20