[1]王东霞,宋爱国.基于三坐标测量机的圆度误差不确定度评估[J].东南大学学报(自然科学版),2014,44(5):952-956.[doi:10.3969/j.issn.1001-0505.2014.05.014]
 Wang Dongxia,Song Aiguo.Uncertainty assessment of circularity error based on coordinate measuring machine[J].Journal of Southeast University (Natural Science Edition),2014,44(5):952-956.[doi:10.3969/j.issn.1001-0505.2014.05.014]
点击复制

基于三坐标测量机的圆度误差不确定度评估()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第5期
页码:
952-956
栏目:
机械工程
出版日期:
2014-09-20

文章信息/Info

Title:
Uncertainty assessment of circularity error based on coordinate measuring machine
作者:
王东霞12宋爱国1
1东南大学仪器科学与工程学院, 南京210096; 2南京工程学院自动化学院, 南京 211167
Author(s):
Wang Dongxia12 Song Aiguo1
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2School of Automation, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
微分进化算法 测量不确定度 蒙特卡洛方法 圆度误差 最小区域圆
Keywords:
differential evolution(DE)algorithm measurement uncertainty Monte Carlo method(MCM) circularity error minimum zone circle(MZC)
分类号:
TH161
DOI:
10.3969/j.issn.1001-0505.2014.05.014
摘要:
为了实现圆度误差的不确定度准确评估,提出了一种在快速准确微分进化算法评定基础上的圆度误差蒙特卡洛(MCM)不确定度评估方法.针对最小区域圆圆度误差评定特点,提出了一种基于种群优化的微分进化算法用于圆度误差评定,并在此基础上利用蒙特卡洛方法进行圆度误差的不确定度评估.通过三坐标测量机对圆度零件的实测数据,给出了一个实例,以验证方法的可行性.分析了圆度误差的不确定度来源,给出了不确定度数值和95%置信概率下的不确定度包含区间,并与传统测量不确定度的表示指南评定方法(GUM)进行了比较.结果表明, 蒙特卡洛不确定度比GUM方法的不确定度小0.3 μm,包含区间也小于GUM.所提出的方法也适用于其他形状误差的评定与不确定度评估.
Abstract:
In order to realize the uncertainty evaluation of circularity error, a Monte Carlo method(MCM)for uncertainty assessment based on the fast and accurate differential evolution(DE)algorithm evaluation is proposed. According to the characteristics of the minimum zone circularity error evaluation,a DE algorithm for circularity error evaluation is presented and an MCM of circularity error uncertainty assessment is developed. By means of the measurement data of roundness part from the three-coordinate measuring machine, an example is given to prove the validity of the proposed method. The significant uncertainty contributors are analyzed. The uncertainty evaluation value and coverage interval under confidence probability of 95% of circularity error based on MCM are presented, and compared with the guide to the expression of uncertainty in measurement(GUM). The MCM uncertainty assessment is 0.3 μm less than the result of the GUM, and the coverage interval is also less than the GUM. The proposed method is also applicable to the error evaluation and uncertainty assessment for parts other than circular form.

参考文献/References:

[1] 任少君,司风琪,徐治皋.基于滑动样本熵的汽轮机热耗率不确定度分析[J]. 东南大学学报:自然科学版,2012,42(增刊Ⅱ):287-291.
  Ren Shaojun, Si Fengqi, Xu Zhigao. Uncertainty evaluation of steam turbine heat rate based on sliding sample entropy[J]. Journal of Southeast University: Natural Science Edition, 2012, 42(SupⅡ): 287-291.(in Chinese)
[2] Murthy T S R, Abdin S Z. Minimum zone evaluation of surfaces[J]. International Journal of Machine Tools Design and Research,1980,20(2):123-136.
[3] Lai K, Wang J. A computational geometry approach to geometric tolerancing[C]//16th North American Manufacturing Research Conference. Champaign, Illinois, USA: University of Illinois,1988:376-379.
[4] Zhu L M, Ding H, Xiong Y L. A steepest descent algorithm for circularity evaluation[J].Compute Aided Design,2003,35(3): 255-265.
[5] Wen Xiulan, Xia Qingguan, Zhao Yibing. An effective genetic algorithm for circularity error unified evaluation[J].International Journal of Machine Tools & Manufacture,2006,46(14):1770-1777.
[6] Li Z F,Cui C C,Che R S. Comparison of genetic algorithm based evaluation of roundness with evaluation of roundness based on least squared method[J]. Optics and Precision Engineering,2003,11(3): 256-261.
[7] Suen D S,Chang C N. Application of neutral network interval regression method for minimum zone circle roundness [J]. Meas Sci Technol, 1997,8(3):245-252.
[8] 温秀兰,张鹏.进化策略实现圆度误差的统一评定研究[J]. 计量学报,2008,29(2): 106-109.
  Wen Xiulan, Zhang Peng. Study on evolutionary strategy applied to the unified evaluation of circularity error[J]. Acta Metrologica Sinica,2008,29(2): 106-109.(in Chinese)
[9] 吴新杰, 张丹,李媛,等. 基于粒子群优化算法处理圆度误差[J]. 传感技术学报,2007,20(4):832-834.
  Wu Xinjie, Zhang Dan, Li Yuan, et al. New measurement method of roundness error based on particle swarm optimization algorithms[J]. Chinese Journal of Sensors and Actuators,2007,20(4):832-834.(in Chinese)
[10] Sun T H. Applying particle swarm optimization algorithm to roundness measurement[J]. Expert Systems with Applications, 2009,36(2):3428-3438.
[11] 吴新杰,陶崇娥.基于混沌和蚁群算法测量圆度误差[J]. 辽宁大学学报:自然科学版, 2008,35(1):11-13.
  Wu Xinjie, Tao Chonge. A measurement method of roundness error based on chaos and ant colony algorithms[J]. Journal of Liaoning University: Natural Science Edition,2008,35(1): 11-13.(in Chinese)
[12] Mao J, Cao Y L, Yang J X. Implementation uncertainty evaluation of cylindricity errors based on geometrical product specification(GPS)[J]. Measurement, 2009, 42(5): 742-747.
[13] BIPM, IEC, IFCC, et al. Evaluation of measurement data—supplement 1 to the “guide to the expression of uncertainty in measurement”—propagation of distributions using a Monte Carlo method[S].Severes, France: Joint Committee for Guides in Metrology, 2008.
[14] 连慧芳.形状误差测量的不确定度评定[D].合肥:合肥工业大学仪器科学与光电工程学院,2010.
[15] Stron R, Price K. Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report TR-95-012[R]. Berkeley, C A, USA: International Computer Sevrience Institute, 1995.
[16] Ela Abou El A A, Abido M A, Spea S R. Differential evolution algorithm for emission constrained economic power dispatch problem[J]. Electric Power Systems Research,2010,80(10):1286-1292.
[17] 张仁勇,罗建军,程潏,等.基于微分进化算法的深空轨道全局优化设计[J]. 力学学报,2012, 44(6):1079-1083.
  Zhang Renyong, Luo Jianjun,Cheng Ju, et al. The global optimization of space exploration trajectory design based on differential evolution algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1079-1083.(in Chinese)
[18] Kitayamaa Satoshi, Arakawab Masao, Koetsu Yamazakia. Differential evolution as the global optimization technique and its application to structural optimization[J]. Applied Soft Computing, 2011,11(4): 3792-3803.
[19] Rugolph G. Convergence analysis of canonical genetic algorithms[J].IEEE Transaction on Neural Network,1994, 5(1): 96-101.

备注/Memo

备注/Memo:
收稿日期: 2014-01-10.
作者简介: 王东霞(1973—),女,博士生,讲师;宋爱国(联系人),男,博士,教授,博士生导师,a.g.song@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61272379,61325018)、东南大学基本科研业务费重大科学研究引导基金资助项目(104.205.2.5).
引用本文: 王东霞,宋爱国.基于三坐标测量机的圆度误差不确定度评估[J].东南大学学报:自然科学版,2014,44(5):952-956. [doi:10.3969/j.issn.1001-0505.2014.05.014]
更新日期/Last Update: 2014-09-20