[1]许兆林,张程宾,陈永平.粗糙固体表面温度阶跃的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(5):989-992.[doi:10.3969/j.issn.1001-0505.2014.05.020]
 Xu Zhaolin,Zhang Chengbin,Chen Yongping.Molecular dynamics simulation of temperature jump on rough solid surfaces[J].Journal of Southeast University (Natural Science Edition),2014,44(5):989-992.[doi:10.3969/j.issn.1001-0505.2014.05.020]
点击复制

粗糙固体表面温度阶跃的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第5期
页码:
989-992
栏目:
能源与动力工程
出版日期:
2014-09-20

文章信息/Info

Title:
Molecular dynamics simulation of temperature jump on rough solid surfaces
作者:
许兆林张程宾陈永平
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 东南大学能源与环境学院, 南京 210096
Author(s):
Xu Zhaolin Zhang Chengbin Chen Yongping
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
温度阶跃 粗糙 纳通道 分子动力学模拟
Keywords:
temperature jump rough nanochannel molecular dynamics simulation
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2014.05.020
摘要:
建立了粗糙纳通道内液体热传导的分子动力学模型,模拟研究了纳通道内液体的温度分布和液固界面处的温度阶跃现象,获得了液固相互作用强度、表面粗糙高度和壁面刚度对界面处温度阶跃的影响规律.研究结果表明:在固体壁面附近,液体温度偏离了线性分布,液固界面处出现了温度阶跃.与光滑表面相比,粗糙度的存在降低了液固界面处的温度阶跃程度.粗糙高度的增加扩大了液固相互作用面积,延长了近壁面附近的液体分子与固体之间的能量交换时间,强化了液固界面的能量传递,从而使得界面处温度阶跃降低.另外,提高液固相互作用强度或者降低固壁刚度均可使液固界面处温度阶跃程度减小.
Abstract:
The molecular dynamics model is established to simulate the heat conduction of liquid in a rough nanochannel so as to investigate the temperature distribution of liquid in nanochannel and the interfacial temperature jump. The effects of liquid-solid interaction, roughness height and wall stiffness on the temperature jump are analyzed. The results indicate that the temperature profile deviates from the linear fashion in the wall-neighboring region, and the temperature jump is observed at the rough solid surface. Compared with the smooth surface, the presence of the roughness decreases the temperature jump length at the boundary. A larger roughness height increases the contact area between the liquid and the solid, which enhances the energy transfer at liquid-solid interface and hence decreases the temperature jump. In addition, the increase in liquid-solid interaction strength or reduction in wall stiffness leads to a smaller temperature jump length.

参考文献/References:

[1] Karniadakis G E, Beskok A, Aluru N R. Microflows and nanoflows: fundamentals and simulation [M]. New York: Springer, 2005:79-188.
[2] Craighead H G. Nanoelectromechanical systems [J]. Science, 2000, 290(5496): 1532-1535.
[3] 曹炳阳, 陈民, 过增元. 纳米通道内液体流动的滑移现象 [J]. 物理学报, 2006, 55(10): 5305-5306.
  Cao Binyang, Chen Min, Guo Zengyuan. Velocity slip of liquid flow in nanochannels [J]. Acta Physica Sinica, 2006, 55(10): 5305-5306.(in Chinese)
[4] 徐超, 何雅玲, 王勇. 纳米通道滑移流动的分子动力学模拟研究 [J]. 工程热物理学报, 2005, 26(6): 912-914.
  Xu Chao, He Yaling, Wang Yong. Molecular dynamics studies of velocity slip phenomena in a nanochannel [J]. Journal of Chemical Physics, 2005, 26(6): 912-914.(in Chinese)
[5] Sun J, Wang W, Wang H S. Dependence between velocity slip and temperature jump in shear flows [J]. The Journal of Chemical Physics, 2013, 138(23): 234703.
[6] 葛宋, 陈民. 速度滑移对界面热阻影响的分子动力学模拟 [J]. 工程热物理学报, 2013, 34(8): 1527-1529.
  Ge Song, Chen Min. Molecular dynamics simulations of the effect of velocity slip on the solid-liquid interfacial thermal resistance [J]. Journal of Engineering Thermophysics, 2013, 34(8): 1527-1529.(in Chinese)
[7] Sun J, Wang W, Wang H S. Dependence of nanoconfined liquid behavior on boundary and bulk factors [J]. Physical Review E, 2013, 87(2): 023020.
[8] Kim B H, Beskok A, Cagin T. Molecular dynamics simulations of thermal resistance at the liquid-solid interface [J]. The Journal of Chemical Physics, 2008, 129(17): 174701.
[9] Li Z G. Surface effects on friction-induced fluid heating in nanochannel flows [J]. Physical Review E, 2009, 79(2): 026312.
[10] Barrat J L, Chiaruttini F. Kapitza resistance at the liquid-solid interface [J]. Molecular Physics, 2003, 101(11): 1605-1610.
[11] Wang Y, Keblinski P. Role of wetting and nanoscale roughness on thermal conductance at liquid-solid interface [J]. Applied Physics Letters, 2011, 99(7): 073112.
[12] Priezjev N V. Effect of surface roughness on rate-dependent slip in simple fluids [J]. The Journal of Chemical Physics, 2007, 127(14): 144708.
[13] Thompson P A, Troian S M. A general boundary condition for liquid flow at solid surfaces [J]. Nature, 1997, 389(6649): 360-362.
[14] Kunert C, Harting J. Roughness induced boundary slip in microchannel flows [J]. Physical Review Letters, 2007, 99(17): 176001.

备注/Memo

备注/Memo:
收稿日期: 2014-05-10.
作者简介: 许兆林(1989—), 男, 硕士生; 陈永平(联系人), 男, 博士, 教授, 博士生导师, ypchen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51222605).
引用本文: 许兆林,张程宾,陈永平.粗糙固体表面温度阶跃的分子动力学模拟[J].东南大学学报:自然科学版,2014,44(5):989-992. [doi:10.3969/j.issn.1001-0505.2014.05.020]
更新日期/Last Update: 2014-09-20