[1]刘长奇,黄亚继,刘培刚,等.生物质快速热解制车用燃料过程的能值分析[J].东南大学学报(自然科学版),2014,44(6):1200-1205.[doi:10.3969/j.issn.1001-0505.2014.06.019]
 Liu Changqi,Huang Yaji,Liu Peigang,et al.Emergy analysis of biomass fast pyrolysis for production of vehicle fuel[J].Journal of Southeast University (Natural Science Edition),2014,44(6):1200-1205.[doi:10.3969/j.issn.1001-0505.2014.06.019]
点击复制

生物质快速热解制车用燃料过程的能值分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第6期
页码:
1200-1205
栏目:
能源与动力工程
出版日期:
2014-11-20

文章信息/Info

Title:
Emergy analysis of biomass fast pyrolysis for production of vehicle fuel
作者:
刘长奇1黄亚继1刘培刚2王昕晔1邵志伟1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2枣庄南郊热电有限公司, 枣庄 277100
Author(s):
Liu Changqi1 Huang Yaji1 Liu Peigang2 Wang Xinye1 Shao Zhiwei1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Zaozhuang South Suburb Thermal Power Co. Ltd., Zaozhuang 277100, China
关键词:
能值分析 生物质热解 车用燃料 可持续性
Keywords:
emergy analysis biomass pyrolysis vehicle fuel sustainability
分类号:
TK6
DOI:
10.3969/j.issn.1001-0505.2014.06.019
摘要:
基于能值分析理论和考虑环境投入,从可持续发展的角度对玉米秸秆热解加氢制精制油过程的2个方案进行综合评价,获得生产效率、环境影响、可持续性方面的能值指标.方案1中的氢气来自初级生物油水相重整,方案2中氢气来自外部市场购买.结果表明:2个方案能值转换率分别为5.00×105 sej/J和1.37×105 sej/J,从能值转换率的角度分析,与方案1、玉米燃料乙醇及生物柴油相比,方案2生产等量燃料消耗的太阳能最少,更有优势;2个方案的能值产出率均为1.07,生产效率较低;环境负载率分别是1.02和1.05,对环境影响较小;可持续发展系数分别是1.05和1.02,可持续性属于中等水平.
Abstract:
Considering the environmental inputs, two schemes of corn stover fast pyrolysis and hydrogenation are evaluated by means of emergy accounting methodology from the viewpoint of sustainable development. The first scenario employs bio-oil reforming to generate requisite hydrogen for bio-oil upgrading, and the second scenario uses merchant hydrogen for bio-oil upgrading. The emergy indices of two schemes are respectively as follows: the transformities of the first scenario and the second scenario are 5.00×105 and 1.37×105 sej/J, respectively; the environment load ratio are 1.02 and 1.05; the emergy sustainable indices are 1.05 and 1.02; the emergy yield ratios are 1.07 and 1.07. The second scheme has more advantages than the first scheme, corn-based fuel ethanol and biodiesel from the emergy analysis for its lower solar energy to produce the equal amount of fuel. Both scenarios have little impact on the environment, their production efficiency are low and the sustainability of the production process belongs to the medium level.

参考文献/References:

[1] Spinelli D, Jez R, Basosi R. Integrated environmental assessment of sunflower oil production [J]. Process Biochemistry, 2012, 47(11): 1595-1602.
[2] Dong X B, Ulgiati S, Yan M C, et al. Energy and emergy evaluation of bioethanol production from wheat in Henan province, China [J]. Energy Policy, 2008, 36(10): 3882-3892.
[3] Cavalett O, Ortega E. Integrated environmental assessment of biodiesel production from soybean in Brazil [J]. Journal of Cleaner Production, 2010, 18(1): 55-70.
[4] Bastianoni S, Coppola F, Tiezzi E, et al. Biofuel potential production from the orbetello lagoon macroalgae: a comparison with sunflower feedstock [J]. Biomass and Bioenergy, 2008, 32(7): 619-628.
[5] Alonso-Pippo W, Rocha J D, Mesa-Pérez J M, et al.Emergy evaluation of bio-oil production using sugarcane biomass residues at fast pyrolysis pilot in Brazil [C]//Proceedings of IV Biennial International WorkshopAdvances in Energy Studies”. Campinas, SP, Brazil, 2004: 401-408.
[6] Liao W J, Heijungs R, Gjalt H. Is bioethanol a sustainable energy source? An energy-,exergy-,and emergy-based thermodynamic system analysis [J]. Renewable Energy, 2011, 36(12): 3479-3487.
[7] Wright M M, Daugaard D E, Satrio J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels [J]. Fuel, 2010, 89(S1): 2-10.
[8] Martin J F, Diemont S A W, Powell E, et al. Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management [J]. Agriculture, Ecosystems & Environment, 2006, 115(1/2/3/4): 128-140.
[9] 蓝盛芳,钦佩,陆宏芳.生态经济系统能值分析[M].北京:化学工业出版社,2002: 249-251.
[10] Pordesimo L O, Sokhansanj S, Edens W C.Moisture and yield of corn stover fractions before and after grain maturity [J]. Transaction of the ASAE, 2004, 47(5): 1597-1603.
[11] 杨慧.基于能值分析的生物质能评价的研究——以木薯燃料乙醇为例[D].广州:华南理工大学化学与化工学院,2011.
[12] International Energy Agency. Electricity information 2011[M].Paris: Imprimerie Centrale, 2011: 718.
[13] Elliutt D C. Historical developments in hydroprocessing bio-oils [J]. Energy and Fuels, 2007, 21(3): 1792-1815.
[14] 胡尊燕.基于能值分析的化工过程可持续性评价及其计算方法研究[D].天津:天津大学化工学院,2009.
[15] Odum H T.Environmental accounting: emergy and environmental decision-making[M]. New York: Wiley,1996: 304.
[16] Giampietro M, Ulgiati S.Integrated assessment of large-scale biofuel production [J]. Critical Reviews in Plant Science, 2005, 24(5/6): 365-384.
[17] Ulgiati S. A comprehensive energy and economic assessment of biofuels:when “green” is not enough [J]. Critical Reviews in Plant Sciences, 2001, 20(1): 71-106.

备注/Memo

备注/Memo:
收稿日期: 2014-03-08.
作者简介: 刘长奇(1987—),男,博士生;黄亚继(联系人),男,博士,教授,博士生导师,heyyj@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2013CB228106).
引用本文: 刘长奇,黄亚继,刘培刚,等.生物质快速热解制车用燃料过程的能值分析[J].东南大学学报:自然科学版,2014,44(6):1200-1205. [doi:10.3969/j.issn.1001-0505.2014.06.019]
更新日期/Last Update: 2014-11-20