[1]王晓霞,王淑莹,彭永臻,等.EBPR的快速启动及其与同步硝化反硝化耦合实现污水的脱氮除磷[J].东南大学学报(自然科学版),2014,44(6):1278-1284.[doi:10.3969/j.issn.1001-0505.2014.06.032]
 Wang Xiaoxia,Wang Shuying,Peng Yongzhen,et al.Fast start-up of EBPR and its coupling with simultaneous nitrification-denitrification to achieve sewage nutrient removal[J].Journal of Southeast University (Natural Science Edition),2014,44(6):1278-1284.[doi:10.3969/j.issn.1001-0505.2014.06.032]
点击复制

EBPR的快速启动及其与同步硝化反硝化耦合实现污水的脱氮除磷()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第6期
页码:
1278-1284
栏目:
环境科学与工程
出版日期:
2014-11-20

文章信息/Info

Title:
Fast start-up of EBPR and its coupling with simultaneous nitrification-denitrification to achieve sewage nutrient removal
作者:
王晓霞王淑莹彭永臻翁冬晨戴娴
北京工业大学北京市水质科学与水环境科学重点实验室, 北京 100124
Author(s):
Wang Xiaoxia Wang Shuying Peng Yongzhen Weng Dongchen Dai Xian
Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
关键词:
SBR 强化生物除磷 聚磷菌 同步硝化反硝化 脱氮除磷
Keywords:
sequencing batch reactor enhanced biological phosphorous removal phosphorous accumulating organisms simultaneous nitrification denitrification nitrogen and phosphorous removal
分类号:
X703
DOI:
10.3969/j.issn.1001-0505.2014.06.032
摘要:
为了解处理生活污水的强化生物除磷(EBPR)系统的除磷和脱氮特性,采用SBR接种普通活性污泥,通过逐步提高进水COD浓度的方式,结合短污泥龄控制,实现了EBPR系统的快速启动,并对启动后系统的脱氮除磷特性进行了研究.试验结果表明:当进水COD浓度由200 mg/L左右逐步提高至500 mg/L左右时, 29 d可实现EBPR系统的启动,此后30 d内出水磷浓度稳定维持在0.5 mg/L以下,磷去除率平均达99.4%.该系统还可长期高效稳定地用于高磷污水(含磷40 mg/L)的处理.成功启动后的EBPR系统内聚磷菌(PAOs)为优势菌,占全菌总数的34% ± 3%,但也存在硝化反硝化菌和聚糖菌.在EBPR系统稳定运行时的好氧段, PAOs吸磷的同时伴随着脱氮菌群的同步硝化反硝化(SND)作用,使得平均总无机氮(TIN)损失达7.6 mg/L,系统总氮(TN)去除率在70%左右.EBPR系统内除磷耦合同步硝化反硝化,可实现污水的脱氮除磷.
Abstract:
In order to know the phosphorus and nitrogen removal characteristics of an enhanced biological phosphorus removal(EBPR)system when dealing with domestic sewage, the EBPR system, which was inoculated with activated sludge in a SBR, was fast started up by gradually increasing the influent COD(chemical oxygen demand)concentration, combined with short sludge retention time control. The nitrogen and phosphorus removal characteristics of the EBPR after being started up were also studied. Experimental results showed that when the influent COD concentration is gradually increased from about 200 mg/L to about 500 mg/L, the EBPR system could be started up in 29 d. The effluent PO3-4-P concentration remaines below 0.5 mg/L in the following 30 d, and the average phosphorus removal efficiency reaches 99.4%. Additionally, this system can be efficiently and stably used for long to deal with high phosphorus wastewater(containing PO3-4-P of 40 mg/L). After the successful start-up of the EBPR system, phosphorous accumulating organisms(PAOs)become the dominant bacteria which accountes for 34%± 3% of total biomass. However, these also exist nitrifying and denitrifying bacteria, and glycogen accumulating organisms(GAOs)as well. Moreover, during the stable operation phase of the EBPR system, simultaneous nitrification and denitrification(SND)are detected at the aerobic stage, coupling with the phosphorous uptake process of PAOs. The SND process leads to an average total inorganic nitrogen loss(TIN)of 7.6 mg/L and a total nitrogen(TN)removal efficiency of about 70%. Phosphorus removal coupling with SND within the EBPR system can achieve the nitrogen and phosphorous removal in wastewater treatment.

参考文献/References:

[1] 苗志加. 强化生物除磷系统聚磷菌的富集反硝化除磷特性 [D]. 北京: 北京工业大学环境与能源工程学院, 2013.
[2] 常功法. 基于厌氧环境的倒置A2/O工艺生物除磷机理研究 [D]. 济南: 山东大学环境科学与工程学院, 2013.
[3] Zeng G E, Artan N, Orhon D, et al. Population dynamics in a sequencing batch reactor fed with glucose and operated for enhanced biological phosphorus removal [J]. Bioresource Technology, 2010, 101(11): 4000-4005.
[4] Wang Yayi, Jiang Fan, Zhang Zhaoxiang, et al. The long-term effect of carbon source on the competition between polyphosphorus accumulating organisms and glycogen accumulating organism in a continuous plug-flow anaerobic/aerobic(A/O)process[J]. Bioresource Technology, 2010, 101(1):98-104.
[5] Oehmen A, Yuan Z G, Blackkall L L, et al. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms [J]. Biotechnology and Bioengineerng, 2005, 91(2): 162-168.
[6] 彭永臻, 薛桂松, 苗志加, 等. 葡萄糖为碳源的EBPR长期运行效果及聚磷菌的富集培养 [J]. 东南大学学报: 自然科学版, 2013, 43(1): 136-141.
  Peng Yongzhen, Xue Guisong, Miao Zhijia, et al. Long term effect of glucose as sole carbon source on EBPR and PAOs enrichment [J]. Journal of Southeast University: Natrual Science Edition, 2013, 43(1): 136-141.(in Chinese)
[7] 国家环境保护总局. 水和废水监测分析方法 [M]. 北京: 中国环境科学出版社, 2002: 252-354.
[8] 许松瑜. 双泥折流板反硝化除磷工艺硝化菌的FISH检测研究 [D]. 苏州: 苏州科技学院环境科学与工程学院, 2011.
[9] Grocetti G R, Hugenholtz P, Bond P L, et al. Identification of polyphosphate accumulating organisms and design of 16SrRNA-directed probes for their detection and quantitation [J]. Applied and Enviromental Microbiology, 2000, 66(3): 1175-1182.
[10] 黄惠珺, 王淑莹, 王忠玮, 等. 不同碳源类型对活性污泥PHA贮存及转化的影响 [J]. 化工学报, 2010, 61(6): 1511-1515.
  Huang Huijun, Wang Shuying, Wang Zhongwei, et al. Effect of various types of carbon source on biochemical storage and substrate transformation of activated sludge [J]. CIESC Journal, 2010, 61(6): 1511-1515.(in Chinese)
[11] 苗志加, 薛桂松, 翁冬晨, 等. 不同碳源对EBPR系统厌氧计量学参数的影响 [J]. 化工学报, 2012, 63(12): 4034-4041.
  Miao Zhijia, Xue Guisong, Weng Dongchen, et al. Effect of various types of carbon sources on anaerobic stoichiometry in enhanced biological phosphorus removal system[J]. CIESC Journal, 2012, 63(12):4034-4041.(in Chinese)
[12] Zeng R J, Lemaire R, Yuan Z, et al. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor [J]. Biotechnology and Bioengineering, 2003, 84(2): 170-178.
[13] Li Jun, Xing Xinhui, Wang Baozhen. Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor(SBR)[J]. Biochemical Engineering Journal, 2003, 16(3): 279-285.
[14] Yang S, Yang F, Fu Z, et al. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment [J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 551-557.
[15] Zeng R J, Yuan Z, Keller J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system [J]. Biotechnology and Bioengineering, 2003, 81(4): 397-404.
[16] Palm J C, Jenkins D, Parker D S. Relationship between organic loading, dissolved oxygen concentration and sludge settle ability in the completely-mixed activated sludge process [J]. Journal(Water Pollution Control Federation), 1980, 52(10): 2484-2506.
[17] Sezgin M, Jenkins D, Parker D S. A unified theory of filamentous activated sludge bulking [J]. Journal(Water Pollution Control Federation), 1978, 50(2): 362-381.
[18] 王亚宜. 反硝化除磷脱氮机理及工艺研究 [D]. 哈尔滨: 哈尔滨工业大学市政环境工程学院, 2004.
[19] Storm P F, Hu P. Effect of pH on fungal growth and bulking in laboratory-activated sludge [J]. Research Journal of the Water Pollution Control Fedaeration, 1991, 63(3): 276-277.
[20] 张宇坤, 郭亚萍, 李军, 等. 序批式颗粒污泥系统中磷的变化和去向分析 [J]. 环境科学学报, 2010, 30(9): 1811-1817.
  Zhang Yukun, Guo Yaping, Li Jun, et al. Analysis of the fate and variation of phosphorus in a granular sludge sequencing batch reactor(SBR)[J]. Acta Scientiae Circumstantiae, 2010, 30(9): 1811-1817.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2014-05-27.
作者简介: 王晓霞(1988—), 女,博士生; 王淑莹(联系人), 女, 教授, 博士生导师, wsy@bjut.edu.cn.
基金项目: 国家自然科学基金资助项目(21177005)、北京市教委科技创新平台资助项目、北京工业大学第12届研究生科技基金资助项目(yjk-2013-9603).
引用本文: 王晓霞,王淑莹,彭永臻,等. EBPR的快速启动及其与同步硝化反硝化耦合实现污水的脱氮除磷[J].东南大学学报:自然科学版,2014,44(6):1278-1284. [doi:10.3969/j.issn.1001-0505.2014.06.032]
更新日期/Last Update: 2014-11-20