[1]戴佼容,刘斯扬,张春伟,等.MOSFET器件热载流子效应SPICE模型[J].东南大学学报(自然科学版),2015,45(1):12-16.[doi:10.3969/j.issn.1001-0505.2015.01.003]
 Dai Jiaorong,Liu Siyang,Zhang Chunwei,et al.SPICE model for hot carrier effect of MOSFET device[J].Journal of Southeast University (Natural Science Edition),2015,45(1):12-16.[doi:10.3969/j.issn.1001-0505.2015.01.003]
点击复制

MOSFET器件热载流子效应SPICE模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
12-16
栏目:
电子科学与工程
出版日期:
2015-01-20

文章信息/Info

Title:
SPICE model for hot carrier effect of MOSFET device
作者:
戴佼容刘斯扬张春伟孙陈超孙伟锋
东南大学国家专用集成电路系统工程技术研究中心, 南京 210096
Author(s):
Dai Jiaorong Liu Siyang Zhang Chunwei Sun Chenchao Sun Weifeng
National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096, China
关键词:
MOSFET 热载流子效应 退化
Keywords:
MOSFET(metal-oxide-semiconductor field-effect transistor) hot carrier effect degradation
分类号:
TN322
DOI:
10.3969/j.issn.1001-0505.2015.01.003
摘要:
为了预测MOSFET器件在热载流子效应影响下的退化情况,建立了一套描述MOSFET器件热载流子效应的可靠性SPICE模型.首先,改进了BSIM3v3模型中的衬底电流模型,将拟合的精确度提高到95%以上.然后,以Hu模型为主要理论依据,结合BSIM3v3模型中各参数的物理意义及其受热载流子效应影响的物理机理,建立了器件各电学参数在直流应力下的退化模型.最后,依据准静态方法将该模型应用于热载流子交流退化模型中.实验数据显示,直流和交流退化模型的仿真结果与实测结果的均方根误差分别为3.8%和4.5%.该模型能准确反映MOSFET器件应力下电学参数的退化情况,且为包含MOSFET器件的电路的性能退化研究提供了模拟依据.
Abstract:
To predict the degradation of the MOSFET(metal-oxide-semiconductor field-effect transistor)device under the influence of the hot carrier effect, a reliability SPICE(simulation program with integrated circuit emphasis)model describing the hot carrier effect of MOSFET device is built. First, the substrate current model in the BSIM3v3 model is improved, making the fitting accuracy higher than 95%.Then, taking the Hu model as the main theoretical basis, the device degradation model of electrical parameters under DC(direct current)stress is set up according to the physical meaning of all the parameters in the BSIM3v3 model and physical mechanism affected by the hot carrier effect. Finally, according to the quasi-static method, this model is applied to the hot carrier AC model. The experimental data show that the root mean square errors between the simulation results and the measured results are 3.8% and 4.5% under DC stress and AC stress, respectively. Therefore, the reliability SPICE model can not only accurately reflect the degradation of electrical parameters of the MOSFET under the stress, but also provide a foundation for simulating the performance degradation of the related complete circuit.

参考文献/References:

[1] Poli S, Reggiani S, Baccarani G, et al. Full understanding of hot-carrier-induced degradation in STI-based LDMOS transistors in the impact-ionization operating regime [C]//2011 IEEE International Symposium on Power Semiconductor Devices and ICs. San Diego, CA, USA, 2011: 152-155.
[2] Randriamihaja Y M, Zaka A, Huard V, et al. Hot carrier degradation: from defect creation modeling to their impact on NMOS parameters[C]//2012 IEEE International Reliability Physics Symposium. Anaheim, CA, USA, 2012: XT. 15.1-XT. 15.4.
[3] Dawes M, Alavi M, Kim D M. AC/DC characterization of NMOS and PMOS hot-carrier-induced degradation under AC/DC stress[J]. IEEE Transactions on Electron Devices, 1990, 37(11): 2416-2419.
[4] Starkov I, Enichlmair H, Tyaginov S. Charge-pumping extraction techniques for hot-carrier induced interface and oxide trap spatial distributions in MOSFETs[C]//IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. Singapore, 2012: 1-6.
[5] Rozen J, Ahyi A C, Zhu X G, et al. Scaling between channel mobility and interface state density in SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2011, 58(11): 3808-3811.
[6] Starkov I, Enichlmair H, Tyaginov S, et al. Analysis of the threshold voltage turn-around effect in high-voltage n-MOSFETs due to hot-carrier stress[C]//2012 IEEE International Reliability Physics Symposium. Anaheim, CA, USA, 2012: XT. 7.1-XT. 7.6.
[7] Teo Z Q, Ang D S, Ng C M. Separation of hole trapping and interface-state generation by ultrafast measurement on dynamic negative-bias temperature instability[J]. IEEE Electron Device Letters, 2010, 31(7): 656-658.
[8] Ji Z G, Zhang J F, Zhang W D, et al. Interface states beyond band gap and their impact on charge carrier mobility in MOSFETs[J]. IEEE Transactions on Electron Devices, 2012, 59(3): 783-790.
[9] Hu C M, Tam S C, Hsu F C, et al. Hot-electron-induced MOSFET degradation—model, monitor, and improvement[J]. IEEE Journal of Solid-State Circuits, 1985, 20(1): 295-305.
[10] Snyder E S, Campbell D V, Swanson S E, et al. Novel self-stressing test structures for realistic high-frequency reliability characterization[C]//1993 IEEE International Reliability Physics Symposium. Atlanta, GA, USA, 1993: 57-65.
[11] Riedlberger E, Keller R, Reisinger H, et al. Modeling the lifetime of a lateral DMOS transistor in repetitive clamping mode[C]//2010 IEEE International Reliability Physics Symposium. Anaheim, CA, USA, 2010: 175-181.
[12] Bellens R, Heremans P, Groeseneken G, et al. The influence of the measurement setup on enhanced AC hot carrier degradation of MOSFETs[J]. IEEE Transactions on Electron Devices, 1990, 37(1): 310-313.

相似文献/References:

[1]刘卫东,魏同立.MOSFET低温热载流子效应[J].东南大学学报(自然科学版),1994,24(2):15.[doi:10.3969/j.issn.1001-0505.1994.02.003]
 Liu Weidong,Wei Tongli.Low Temperature Hot Carrier Effects in MOSFET’s[J].Journal of Southeast University (Natural Science Edition),1994,24(1):15.[doi:10.3969/j.issn.1001-0505.1994.02.003]
[2]张艺,张春伟,刘斯扬,等.功率LIGBT热载流子退化机理及环境温度影响[J].东南大学学报(自然科学版),2016,46(2):255.[doi:10.3969/j.issn.1001-0505.2016.02.005]
 Zhang Yi,Zhang Chunwei,Liu Siyang,et al.Hot-carrier degradation mechanism and influence of ambient temperature for power LIGBT[J].Journal of Southeast University (Natural Science Edition),2016,46(1):255.[doi:10.3969/j.issn.1001-0505.2016.02.005]

备注/Memo

备注/Memo:
收稿日期: 2014-07-30.
作者简介: 戴佼容(1987—),女,硕士生;孙伟锋(联系人),男,博士,教授,博士生导师,swffrog@seu.edu.cn.
基金项目: 东南大学无锡分校科研引导资金资助项目、东南大学研究生科研基金资助项目(YBPY1403).
引用本文: 戴佼容,刘斯扬,张春伟,等.MOSFET器件热载流子效应SPICE模型[J].东南大学学报:自然科学版,2015,45(1):12-16. [doi:10.3969/j.issn.1001-0505.2015.01.003]
更新日期/Last Update: 2015-01-20