[1]章雯,张爽,张友法,等.泡沫铜纳米针超疏水表面电化学构建技术及其油水分离特性[J].东南大学学报(自然科学版),2015,45(1):69-73.[doi:10.3969/j.issn.1001-0505.2015.01.013]
 Zhang Wen,Zhang Shuang,Zhang Youfa,et al.Fabrication of superhydrophobic surfaces on porous copper by electrochemical oxidation and its performance in oil-water separation[J].Journal of Southeast University (Natural Science Edition),2015,45(1):69-73.[doi:10.3969/j.issn.1001-0505.2015.01.013]
点击复制

泡沫铜纳米针超疏水表面电化学构建技术及其油水分离特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
69-73
栏目:
化学化工
出版日期:
2015-01-20

文章信息/Info

Title:
Fabrication of superhydrophobic surfaces on porous copper by electrochemical oxidation and its performance in oil-water separation
作者:
章雯张爽张友法余新泉
东南大学材料科学与工程学院, 南京 211189; 东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189
Author(s):
Zhang Wen Zhang Shuang Zhang Youfa Yu Xinquan
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
关键词:
泡沫铜 超疏水 超亲油 阳极氧化 油水分离
Keywords:
porous copper superhydrophobicity superoleophilicity anodic oxidation oil-water separation
分类号:
O647
DOI:
10.3969/j.issn.1001-0505.2015.01.013
摘要:
采用电化学氧化法,在泡沫铜多孔材料表面构建了纳米针结构.利用扫描电子显微、X射线衍射图谱分析及油水测试方法研究了电流密度对表面微观形貌、组成成分、润湿性和油水分离特性的影响.结果表明,增大电流密度可促进Cu(OH)2纳米针绒毛状微米团簇的生成,形成微纳复合结构,使超浸润性和油水分离特性明显提高.当电流密度为6 mA/cm2时,泡沫铜表面具有微纳复合结构.表面经改性后,水滴的静态接触角为161°,滚动角为7.2°,油滴则在表面完全润湿铺展,油水分离效率高达98%.同时,此改性表面显示出良好的抗水冲击性和耐水压性.
Abstract:
The nanoneedle structure was fabricated on porous copper surface by electrochemical oxidation method. The effects of the current density on the microstructure, chemical composition, wettability and oil-water separation property were studied by scanning electron microscopy, X-ray diffraction and oil-water test. The results show that the increase of the current density can promote the growth of Cu(OH)2 nanoneedle villous clusters and the formation of the micro-nano composite structure, improving the superwettability and oil-water separation property obviously. Micro-nano composite structure is obtained on porous copper surface under current density of 6 mA/cm2. The surface with this structure exhibits a static water contact angle of 161° and a rolling angle of 7.2° after modification. In contrast, oil can complete wet on the surface, and the oil-water separation efficiency can reach up to 98%. At the same time, the modified surface shows good properties of resistance to droplets dynamic impacting and water pressure.

参考文献/References:

[1] 陈钰,徐建生,郭志光.仿生超疏水性表面的最新应用研究[J].化学进展,2012,24(5):696-708.
  Chen Yu, Xu Jiansheng, Guo Zhiguang. Recent advances in application of biomimetic superhydrophobic surfaces[J]. Progress Chemical, 2012, 24(5): 696-708.(in Chinese)
[2] 张靓,赵宁,徐坚.特殊浸润性表面在油水分离中的应用[J].科学通报,2013,58(33):3372-3380.
  Zhang Liang, Zhao Ning, Xu Jian. Surfaces with special wettability: applications in oil/water separation[J]. Chinese Science Bulletin, 2013, 58(33): 3372-3380.(in Chinese)
[3] Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition, 2004, 43(15): 2012-2014.
[4] Pan Q, Wang M, Wang H. Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes[J]. Applied Surface Science, 2008, 254(18): 6002-6006.
[5] Kota1 A K, Kwon1 G, Choi W, et al. Hygro-responsive membranes for effective oil-water separation[J]. Nature Communication, 2012, 3: 2027-2034.
[6] Zhou X Y, Zhang Z Z, Xu X H, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation[J]. Applied Material Interfaces, 2013, 5(15): 7208-7214.
[7] Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communication, 2012, 48(86): 10660-10662.
[8] Nguyen D D, Tai N H, Lee S B, et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J]. Energy Environment Science, 2012, 5(7): 7908-7912.
[9] 张友法,余新泉,周荃卉,等.超疏水低粘着铜表面制备及其防覆冰性能[J].物理化学学报,2010,26(5):1457-1462.
  Zhang Youfa, Yu Xinquan, Zhou Quanhui, et al. Fabrication and anti-icing performance of a superhydrophobic copper surface with low adhesion[J]. Acta Physico-Chimica Sinica, 2010, 26(5): 1457-1462.(in Chinese)
[10] 张友法,余新泉,周荃卉,等.超疏水钢表面的制备及其抗结霜性能[J].东南大学学报:自然科学版,2010,40(6):1318-1322.
  Zhang Youfa, Yu Xinquan, Zhou Quanhui, et al. Fabrication of superhydrophobic steel surface and its anti-frosting performance[J]. Journal of Southeast University: Natural Science Edition, 2010, 40(6): 1318-1322.(in Chinese)
[11] Zang D M, Wu C X, Zhu R W, et al. Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water[J]. Chemical Communication, 2013, 49(75): 8410-8412.
[12] Singh D P, Neti N R, Sinha A S K, et al. Growth of different nanostructures of Cu2O(nanothreads, nanowires, and nanocubes)by simple electrolysis based oxidation of copper[J]. The Journal of Physical Chemical C, 2007, 111(4): 1638-1645.
[13] Lee S H, Her Y S, Matijevi E. Preparation and growth mechanism of uniformcolloidal copper oxide by the controlled double-jet precipitation[J]. Journal of Colloid Interface Science, 1997, 186(1): 193-202.
[14] Marmur A. The lotus effect: superhydrophobicity and metastability[J]. Langmuir, 2004, 20(9): 3517-3519.
[15] Nearing M A, Bradford J M, Holtz R D. Measurement of force vs. time relations for waterdrop impact[J]. Soil Science Society of America Journal, 1986, 50(6): 1531-1536.

相似文献/References:

[1]张友法,余新泉,周荃卉,等.超疏水钢表面的制备及其抗结霜性能[J].东南大学学报(自然科学版),2010,40(6):1318.[doi:10.3969/j.issn.1001-0505.2010.06.036]
 Zhang Youfa,Yu Xinquan,Zhou Quanhui,et al.Fabrication of superhydrophobic steel surface and its anti-frosting performance[J].Journal of Southeast University (Natural Science Edition),2010,40(1):1318.[doi:10.3969/j.issn.1001-0505.2010.06.036]

备注/Memo

备注/Memo:
收稿日期: 2014-08-24.
作者简介: 章雯(1987—),女,硕士生;张友法(联系人),男,博士,副教授,博士生导师,yfzhang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51101035)、苏州市科技发展计划(技术专项)资助项目(ZXG2012020).
引用本文: 章雯,张爽,张友法,等.泡沫铜纳米针超疏水表面电化学构建技术及其油水分离特性[J].东南大学学报:自然科学版,2015,45(1):69-73. [doi:10.3969/j.issn.1001-0505.2015.01.013]
更新日期/Last Update: 2015-01-20