[1]李应林,周飞,张小松,等.制冷剂两相流音速对引射器喷嘴结构的影响[J].东南大学学报(自然科学版),2015,45(1):91-96.[doi:10.3969/j.issn.1001-0505.2015.01.017]
 Li Yinglin,Zhou Fei,Zhang Xiaosong,et al.Effect of sonic velocity of two-phase refrigerant fluid on structure of ejector nozzle[J].Journal of Southeast University (Natural Science Edition),2015,45(1):91-96.[doi:10.3969/j.issn.1001-0505.2015.01.017]
点击复制

制冷剂两相流音速对引射器喷嘴结构的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
91-96
栏目:
能源与动力工程
出版日期:
2015-01-20

文章信息/Info

Title:
Effect of sonic velocity of two-phase refrigerant fluid on structure of ejector nozzle
作者:
李应林12周飞1张小松3杜垲3张忠斌1陈传宝4谭来仔4
1南京师范大学能源与机械工程学院, 南京 210042; 2南京师范大学江苏省能源系统过程转化与减排技术工程实验室, 南京 210042; 3东南大学能源与环境学院, 南京 210096; 4南京五洲制冷集团有限公司, 南京 211100
Author(s):
Li Yinglin12 Zhou Fei1 Zhang Xiaosong3 Du Kai3 Zhang Zhongbin1Chen Chuanbao4 Tan Laizai4
1School of Energy and Mechanics, Nanjing Normal University, Nanjing 210042, China
2Engineering Laboratory for Energy System Process Conversion and Emission Control Technology, Nanjing Normal University, Nanjing 210042, China
3School of Energy and Environment, Southeast University, Nanjing 210096, China
4Nanjing Wu-Zhou Refrigeration Group Co. Ltd, Nanjing 211100, China
关键词:
引射器 音速 临界温度 缩放喷嘴
Keywords:
ejector sonic velocity critical temperature convergent-divergent nozzle
分类号:
TK123
DOI:
10.3969/j.issn.1001-0505.2015.01.017
摘要:
将液-液引射器内部的喷嘴作为研究对象,建立了喷嘴内气液两相流的非等熵膨胀模型和均相流音速模型.研究了制冷剂R134a和R22在不同喷嘴进出口压降条件下,喷嘴出口气液两相流音速的变化规律.模拟结果表明:随着喷嘴出口饱和温度的降低,喷嘴出口音速缓慢降低,而实际速度快速增大,喷嘴出口处R22的当地音速约为R134a当地音速的1.5倍;当喷嘴入口饱和温度为40 ℃时,R134a在喷嘴内实际膨胀过程的临界温度为14.5 ℃;对于高压液体作为工作流体的引射器,其喷嘴宜采用缩放型;当喷嘴入口饱和温度分别为40和50 ℃时,R22在喷嘴内实际膨胀过程的临界温度分别为-3.5和3.0 ℃,宜采用渐缩型喷嘴.
Abstract:
The nozzle of a liquid-liquid ejector is selected as the research object, and a non-isentropic expanding model and a homogeneous sonic model of gas-liquid two-phase fluid in the nozzle are established. Then the change trend of sonic velocities of R134a and R22 under different inlet-outlet pressure drop of nozzle are investigated. Simulation results show that, with the decrease of saturation temperature of the nozzle outlet, the local sonic velocity of nozzle outlet decreases slowly. But the actual speed of nozzle outlet increases quickly, the sonic velocity of R22 in the nozzle outlet is about 1.5 times that of R134a. While the temperature of nozzle inlet maintains 40 ℃, the critical temperature of R134a in the actual expanding process is about 14.5 ℃, and a convergent-divergent nozzle should be adopted for the ejector. When the inlet saturated temperature of nozzle are 40 and 50 ℃, the critical temperatures of R22 in the actual expansion process are -3.5 and 3.0 ℃, respectively, and a tapered nozzle should be used for the ejector.

参考文献/References:

[1] Chen X J, Omer S, Worall M. Recent developments in ejector refrigeration technologies [J]. Renewable and Sustainable Energy Reviews, 2013, 19: 629-651.
[2] Abdulateef J M, Sopian K, Alghoul M A, et al. Review on solar-driven ejector refrigeration technologies [J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1338-1349.
[3] Dahmani A, Aidoun Z, Galanis N. Optimum design of ejector refrigeration systems with environmentally benign fluids [J]. International Journal of Thermal Sciences, 2011, 50(8): 1562-1572.
[4] Sumeru K, Nasution H, Ani F N. A review on two phase ejector as an expansion device in vapor compression refrigeration cycle [J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4927-4937.
[5] Bilir N, Ersoy H K. Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector [J]. International Journal of Energy Research, 2009, 33(5): 469-480.
[6] Sarkar J. Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants [J]. International Journal of Energy Research, 2010, 34(1): 84-94.
[7] Dopazo J A, Seara J F. Experimental evaluation of an ejector as liquid re-circulator in an overfeed NH3 system with a plate evaporator [J]. International Journal of Refrigeration, 2011, 34(7): 1676-1683.
[8] Li Y L, Tan L Z, Zhang X S, et al. Experimental evaluation of an ejector as liquid re-circulator in a falling-film water chiller [J]. International Journal of Refrigeration, 2014, 40: 309-316.
[9] 李应林, 谭来仔, 陈传宝, 等. 液液引射器性能的数值模拟与实验[J]. 东南大学学报: 自然科学版, 2014, 44(2): 289-294.
  Li Yinglin, Tan Laizai, Chen Chuanbao, et al. Numerical simulation and experimental investigation on performance of liquid-liquid ejector [J]. Journal of Southeast University: Natural Science Edition, 2014, 44(2):289-294.(in Chinese)
[10] Yang L, Wang W. The heat transfer performance of horizontal tube bundles in large falling film evaporators [J]. International Journal of Refrigeration, 2011, 34(1): 303-316.
[11] Chen X, Zhou Y, Yu J. A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application [J]. Energy and Buildings, 2011, 43(12): 3331-3336.
[12] He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors [J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 1760-1780.
[13] 谭连城. 含有热力偏导数的流体热力性质的计算——Lee-Kesler方程的导数压缩性系数及其应用[J]. 化工学报, 1981, 32(4): 322-335.
  Tan Liancheng. Calculation of the fluid thermodynamic properties involving partial derivatives—derivative compressibility factors of Lee-Kesler equation and its application [J]. Journal of Chemical Industry and Engineering, 1981, 32(4): 322-335.(in Chinese)
[14] 陈亚平, 韩绍辛, 陈丹之. 气态有机介质的音速计算与测量[J]. 工程热物理学报, 1987, 8(1): 13-16.
  Chen Yaping, Han Shaoxin, Chen Danzhi. The calculation and measurement of sound velocity of gaseous organic mediums [J]. Journal of Engineering Thermophysics, 1987, 8(1): 13-16.(in Chinese)
[15] Pate M B, Tree D R. An analysis of choked flow conditions in a capillary tube-suction line heat exchanger [J]. ASHRAE Transactions, 1987, 93(1): 368-380.
[16] Kim Y. A comparison of critical flow models for estimating two-phase flow of HCFC22 and HFC134a through short tube orifices [J]. International Journal of Refrigeration, 1995, 18(7): 447-455.
[17] Chan C Y, Haselden G G. Computer-based refrigerant thermo-dynamic properties, part 1: basic equations [J]. International Journal of Refrigeration, 1981, 4(1): 7-12.
[18] Melo C, Ferreira R T, Neto C B, et al. An experimental analysis of adiabatic capillary tubes [J]. Applied Thermal Engineering, 1999, 19(6): 669-684.

相似文献/References:

[1]李应林,等.液液引射器性能的数值模拟与实验[J].东南大学学报(自然科学版),2014,44(2):289.[doi:10.3969/j.issn.1001-0505.2014.02.012]
 Li Yinlin,Tan Laizhi,et al.Numerical simulation and experimental investigation on performance of liquid-liquid ejector[J].Journal of Southeast University (Natural Science Edition),2014,44(1):289.[doi:10.3969/j.issn.1001-0505.2014.02.012]

备注/Memo

备注/Memo:
收稿日期: 2014-09-10.
作者简介: 李应林(1979—),男,博士,副教授,ylli@njnu.edu.cn.
基金项目: “十二五”国家科技支撑计划子课题资助项目(2011BAJ03B05-03)、中国博士后基金资助项目(2012M520970)、江苏省自然科学基金资助项目(BK20140924).
引用本文: 李应林,周飞,张小松,等.制冷剂两相流音速对引射器喷嘴结构的影响[J].东南大学学报:自然科学版,2015,45(1):91-96. [doi:10.3969/j.issn.1001-0505.2015.01.017]
更新日期/Last Update: 2015-01-20