[1]李万金,郭力,高阳,等.混凝土中氯离子扩散纳米通道紧缩性和曲折性影响的分子动力学模拟[J].东南大学学报(自然科学版),2015,45(1):109-114.[doi:10.3969/j.issn.1001-0505.2015.01.020]
 Li Wanjin,Guo Li,Gao Yang,et al.Molecular dynamics simulation of chloride diffusion in concrete considering constrictivity and tortuosity of nanochannels[J].Journal of Southeast University (Natural Science Edition),2015,45(1):109-114.[doi:10.3969/j.issn.1001-0505.2015.01.020]
点击复制

混凝土中氯离子扩散纳米通道紧缩性和曲折性影响的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
109-114
栏目:
数学、物理学、力学
出版日期:
2015-01-20

文章信息/Info

Title:
Molecular dynamics simulation of chloride diffusion in concrete considering constrictivity and tortuosity of nanochannels
作者:
李万金郭力高阳洪俊
东南大学江苏省高校工程力学分析重点实验室, 南京 210096
Author(s):
Li Wanjin Guo Li Gao Yang Hong Jun
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
混凝土纳米通道 氯离子扩散 紧缩性 曲折性
Keywords:
nanochannel in concrete chloride diffusion constrictivity tortuosity
分类号:
O35
DOI:
10.3969/j.issn.1001-0505.2015.01.020
摘要:
结合宏观和微观模型研究了混凝土中纳米通道紧缩性和曲折性对氯离子扩散系数的影响.采用分子动力学方法模拟了氯离子在纳米通道中的输运过程,给出了紧缩性和曲折性影响输运过程的微观机理,结合宏观Fick定律统计分析了模拟结果,得出了紧缩性和曲折性对氯离子扩散系数的影响程度.结果表明,通道壁面结合氯离子影响孔隙液中的粒子分布,使得壁面附近形成吸附自由氯离子的正电层,降低了氯离子的扩散速度;结合氯离子浓度越大,氯离子扩散系数越小.同时,通道壁面原子作用势影响孔隙液中粒子的分布,在壁面附近形成有序的粒子层;通道宽度越大,氯离子扩散系数越大.曲折的通道会强制改变氯离子的输运方向,降低氯离子的扩散系数.
Abstract:
The effects of constrictivity and tortuosity of nanochannels on chloride diffusivity in concrete are studied with macro- and micro-scale models. Chloride diffusion processes in concrete nanochannels are simulated with the molecular dynamics method. Correspondingly, microscopic mechanism of effects of constrictivity and tortuosity is obtained. Fick’s law is adopted to analyze the simulated results, which clarifies the effect degrees of constrictivity and tortuosity on chloride diffusivity. The results show that ions distribution in pore fluid is affected by bound chlorides in nanochannel walls, leading to formation of positron layers which adsorb free chlorides and reduce their diffusion rate. The larger the bound chloride concentration, the smaller the chloride diffusivity. Atomic potentials of nanochannel walls also affect ions distribution. As nanochannel width increases, chloride diffusivity is larger. In tortuous nanochannel, the transport direction of chlorides can be changed, which reduces their diffusion rate.

参考文献/References:

[1] 冷发光,周永祥,王晶.混凝土耐久性及其检验评价方法[M].北京:中国建材工业出版社,2012: 213-220.
[2] Tang L P, Gulikers J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete [J]. Cement and Concrete Research, 2007, 37(4): 589-595.
[3] Bitarraf M, Mohammadi S. Analysis of chloride diffusion in concrete structures for prediction of initiation time of corrosion using a new meshless approach [J]. Construction and Building Materials, 2008, 22(4): 546-556.
[4] Nakarai K, Ishida T, Maekawa K. Multi-scale physicochemical modeling of soil-cementitious material interaction [J]. Soils and Foudations, 2006, 46(5): 653-663.
[5] Ishida T, Iqbal P O, Anh H T L. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete [J]. Cement and Concrete Research, 2009, 39(10): 913-923.
[6] Guo L, Guo X M, Mi C W. Multi-scale finite element analysis of chloride diffusion in concrete incorporating paste/aggregate ITZs [J]. Science China Physics, Mechanics and Astronomy, 2012, 55(9): 1696-1702.
[7] Guo L, Chen T, Gao X W. Transient meshless boundary element method for prediction of chloride diffusion in concrete with time dependent nonlinear coefficients [J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 104-111.
[8] Sun G W, Zhang Y S, Sun W, et al. Multi-scale prediction of the effective chloride diffusion coefficient of concrete [J]. Construction and Building Materials, 2011, 25(10): 3820-3831.
[9] Rapaport D C. The art of molecular dynamics simulation [M]. Cambridge: Cambridge University Press, 2004: 11-42.
[10] 曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象[J].物理学报,2006,55(10):5305-5310.
  Cao Bingyang, Chen Min, Guo Zengyuan. Velocity slip of liquid flow in nanochannels [J]. Acta Physica Sinica, 2006, 55(10): 5305-5310.(in Chinese)
[11] 解辉,刘朝,刘彬武.纳米通道内混合气体流动的分子动力学模拟[J].物理化学学报,2009,25(5):994-998.
  Xie Hui, Liu Chao, Liu Binwu. Molecular dynamics simulation of gas mixture flow in nanochannel [J]. Acta Physico-Chimica Sinica, 2009, 25(5): 994-998.(in Chinese)

相似文献/References:

[1]蒋金洋,孙伟,王晶,等.弯曲疲劳载荷作用下结构混凝土抗氯离子扩散性能[J].东南大学学报(自然科学版),2010,40(2):362.[doi:10.3969/j.issn.1001-0505.2010.02.028]
 Jiang Jinyang,Sun Wei,Wang Jing,et al.Resistance to chloride ion diffusion of structural concrete under bending fatigue load[J].Journal of Southeast University (Natural Science Edition),2010,40(1):362.[doi:10.3969/j.issn.1001-0505.2010.02.028]
[2]肖建庄,卢登,马志鸣.考虑再生粗骨料随机分布的混凝土氯离子扩散细观数值模拟[J].东南大学学报(自然科学版),2014,44(6):1240.[doi:10.3969/j.issn.1001-0505.2014.06.026]
 Xiao Jianzhuang,Lu Deng,Ma Zhiming.Mesoscopic numerical simulation on chloride diffusion in concrete with random distributed recycled coarse aggregate[J].Journal of Southeast University (Natural Science Edition),2014,44(1):1240.[doi:10.3969/j.issn.1001-0505.2014.06.026]

备注/Memo

备注/Memo:
收稿日期: 2014-07-12.
作者简介: 李万金(1988—),男,博士生;郭力(联系人),男,博士,副教授,博士生导师,lguo@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2009CB623202)、国家自然科学基金资助项目(11302049,51478108).
引用本文: 李万金,郭力,高阳,等.混凝土中氯离子扩散纳米通道紧缩性和曲折性影响的分子动力学模拟[J].东南大学学报:自然科学版,2015,45(1):109-114. [doi:10.3969/j.issn.1001-0505.2015.01.020]
更新日期/Last Update: 2015-01-20