[1]张莹,孙广俊,李鸿晶.混凝土结构多尺度建模界面连接方法[J].东南大学学报(自然科学版),2015,45(1):126-132.[doi:10.3969/j.issn.1001-0505.2015.01.023]
 Zhang Ying,Sun Guangjun,Li Hongjing.Interface connection method of multi-scale modeling of concrete structure[J].Journal of Southeast University (Natural Science Edition),2015,45(1):126-132.[doi:10.3969/j.issn.1001-0505.2015.01.023]
点击复制

混凝土结构多尺度建模界面连接方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
126-132
栏目:
土木工程
出版日期:
2015-01-20

文章信息/Info

Title:
Interface connection method of multi-scale modeling of concrete structure
作者:
张莹孙广俊李鸿晶
南京工业大学土木工程学院, 南京 210009
Author(s):
Zhang Ying Sun Guangjun Li Hongjing
College of Civil Engineering, Nanjing Technology University, Nanjing 210009, China
关键词:
混凝土结构 多尺度模型 变形协调 力的平衡 界面连接
Keywords:
concrete structure multi-scale model deformation coordination force balance interface connection
分类号:
TU375
DOI:
10.3969/j.issn.1001-0505.2015.01.023
摘要:
分别采用变形协调方法和力的平衡方法建立了混凝土单柱的多尺度模型,分析了混凝土柱在静力荷载下的内力分布特征及动力荷载下的变形性能,并对多尺度模型界面连接方式的合理性进行了分析.在此基础上,以某三层钢筋混凝土框架结构为例,分别建立了结构的实体模型、梁模型和力平衡界面连接下的多尺度模型;计算了多尺度模型的低周往复性能,并与试验结果进行对比,以验证力平衡界面连接方式在多尺度建模中的有效性.结果表明:在静力荷载作用下,运用力平衡方法处理界面连接较变形协调方法更符合实际受力情况;在动力荷载作用下,2种界面连接方式都是可行的.采用多尺度模型进行整体结构建模,既能可靠地实现结构整体受力行为的模拟,还能反映结构关键部位的受力性能,计算效率显著提高.
Abstract:
The deformation coordination method and the force balance method are individually used to establish multi-scale models of a single column. The stress distribution under the static force and the deformation behavior under the dynamic force of the column are analyzed, and the reasonability of the connection between different interfaces in multi-scale models is verified. On this basis, a three-storey reinforced concrete frame is taken as an example, and a solid element model, a beam element model and a multi-scale model under interfacial connection of force balance are established. The cyclic loading performance of the multi-scale model is calculated and compared with the experimental results to verify the effectiveness of the interface connection method of force balance. The results show that under static loads, the model under interface connection of force balance conforms to actual situation better than that under deformation coordination. However, under dynamic loads, both interface connection modes are feasible. Therefore, simulating the whole structure by using the multi-scale model can accurately implement the simulation of the overall structure behavior, reflect the stress behaviors of the key parts and improve the calculation efficiency obviously.

参考文献/References:

[1] 林旭川, 陆新征, 叶列平. 钢-混凝土混合框架结构多尺度分析及其建模方法[J]. 计算力学学报, 2010, 27(3): 469-475.
  Lin Xuchuan, Lu Xinzheng, Ye Lieping. Multi-scale finite element modeling and its application in the analysis of a steel concrete hybrid frame [J]. Chinese Journal of Computational Mechanics, 2010, 27(3): 469-475.(in Chinese)
[2] Yu Q, Fish J. Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem [J]. International Journal of Solids and Structures, 2002, 39(26): 6429-6452.
[3] Oskay C, Fish J. Multiscale modeling of fatigue for ductile materials [J]. International Journal for Multi-scale Computational Engineering, 2004, 2(3): 329-353.
[4] Hund A, Ramm E. Application of the variational multiscale method to damage of composites [C]//Proceeding of the 11th International Conference on Fracture. Turin, Italy, 2005:1092-1097.
[5] 陈志文, 李兆霞, 卫志勇. 土木结构损伤多尺度并发计算方法及其应用[J]. 工程力学, 2012, 29(10): 205-210.
  Chen Zhiwen, Li Zhaoxia, Wei Zhiyong. Concurrent multi-scale computational method for damage analyses of civil structures [J]. Engineering Mechanics, 2012, 29(10): 205-210.(in Chinese)
[6] Li Z X, Chan T H T, Yu Y, et al. Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration—part Ⅰ: modeling methodology and strategy [J]. Finite Elements in Analysis and Design, 2009, 45(11): 782-794.
[7] Li Z X, Zhou T Q, Chan T H T, et al. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges [J]. Engineering Structures, 2007, 29(7): 1507-1524.
[8] 李兆霞. 大型土木结构多尺度损伤预后的现状、研究思路与前景[J]. 东南大学学报:自然科学版, 2013, 43(5): 1111-1121.
  Li Zhaoxia. State of the art in multi-scale damage prognosis for major infrastructures [J]. Journal of Southeast University:Natural Science Edition, 2013, 43(5): 1111-1121.(in Chinese)
[9] 石永久, 王萌, 王元清. 基于多尺度模型的钢框架抗震性能分析[J]. 工程力学, 2011, 28(12): 20-26.
  Shi Yongjiu, Wang Meng, Wang Yuanqing. Seismic behavior analysis of steel frame by multi-scale calculation method [J]. Engineering Mechanics, 2011, 28(12): 20-26.(in Chinese)
[10] Michopoulos G, Farhat C, Fish J. Modeling and simulation of multiphysics systems [J]. Journal of Computing and Information Science in Engineering, 2005, 5(3): 198-213.
[11] Ladevèze P, Nouy A, Loiseau O. A multi-scale computational approach for contact problems [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(43): 4869-4891.
[12] 陆新征. 钢筋混凝土框架结构拟静力倒塌实验[EB/OL].(2011-06-20)[2014-01-12]. http://www.collapse-prevention.net/download/Frame_Collapse_Newletter_01.pdf.
[13] 陆新征, 叶列平, 潘鹏, 等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅰ: 框架试验[J]. 建筑结构, 2012, 42(11): 19-22.
  Lu Xinzheng, Ye Lieping, Pan Peng, et al. Pseudo-static collapse experiments and numerical prediction competition of RC frame structure Ⅰ: RC frame experiment [J]. Building Structure, 2012, 42(11): 19-22.(in Chinese)
[14] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.

相似文献/References:

[1]程文瀼,苏毅,吴强.混凝土结构中若干问题的探讨[J].东南大学学报(自然科学版),2003,33(5):549.[doi:10.3969/j.issn.1001-0505.2003.05.004]
 Cheng Wenrang,Su Yi,Wu Qiang.Study on several problems in concrete structures[J].Journal of Southeast University (Natural Science Edition),2003,33(1):549.[doi:10.3969/j.issn.1001-0505.2003.05.004]
[2].我院博士生张冲获第十一届“混凝土结构世界”国际学术会议杰出论文奖[J].东南大学学报(自然科学版),1986,16(6):5.[doi:10.3969/j.issn.1001-0505.1986.06.003]
 [J].Journal of Southeast University (Natural Science Edition),1986,16(1):5.[doi:10.3969/j.issn.1001-0505.1986.06.003]
[3]丁幼亮,李爱群,缪长青.面向结构安全评估的大跨斜拉桥基准有限元模型[J].东南大学学报(自然科学版),2007,37(2):261.[doi:10.3969/j.issn.1001-0505.2007.02.015]
 Ding Youliang,Li Aiqun,Miao Changqing.Structural-safety-evaluation-oriented baseline finite element model of long-span cable-stayed bridge[J].Journal of Southeast University (Natural Science Edition),2007,37(1):261.[doi:10.3969/j.issn.1001-0505.2007.02.015]
[4]许崇法,曹双寅,范沈龙,等.多因素作用下混凝土中性化深度统一预测模型[J].东南大学学报(自然科学版),2014,44(2):363.[doi:10.3969/j.issn.1001-0505.2014.02.024]
 Xu Chongfa,Cao Shuangyin,Fan Shenlong,et al.Unified prediction model of concrete neutral depth under multiple factors[J].Journal of Southeast University (Natural Science Edition),2014,44(1):363.[doi:10.3969/j.issn.1001-0505.2014.02.024]
[5]叶继红,申会谦.风荷载下空间网格结构疲劳性能[J].东南大学学报(自然科学版),2016,46(4):842.[doi:10.3969/j.issn.1001-0505.2016.04.028]
 Ye Jihong,Shen Huiqian.Fatigue performance of spatial latticed structures under wind loads[J].Journal of Southeast University (Natural Science Edition),2016,46(1):842.[doi:10.3969/j.issn.1001-0505.2016.04.028]

备注/Memo

备注/Memo:
收稿日期: 2014-07-29.
作者简介: 张莹(1988—),女,博士生;孙广俊(联系人),男,博士,副教授,gjsun2004@163.com.
基金项目: 江苏省自然科学基金资助项目(BK20130937)、江苏省普通高校研究生科研创新计划项目(CXZZ13_0441)、东南大学混凝土及预应力混凝土结构教育部重点实验室开放课题基金资助项目(CPCSME2011-04).
引用本文: 张莹,孙广俊,李鸿晶.混凝土结构多尺度建模界面连接方法[J].东南大学学报:自然科学版,2015,45(1):126-132. [doi:10.3969/j.issn.1001-0505.2015.01.023]
更新日期/Last Update: 2015-01-20