[1]赵小燕,周琳,吴镇扬.基于压缩感知的麦克风阵列声源定位算法[J].东南大学学报(自然科学版),2015,45(2):203-207.[doi:10.3969/j.issn.1001-0505.2015.02.001]
 Zhao Xiaoyan,Zhou Lin,et al.Compressed sensing-based sound source localization algorithm for microphone array[J].Journal of Southeast University (Natural Science Edition),2015,45(2):203-207.[doi:10.3969/j.issn.1001-0505.2015.02.001]
点击复制

基于压缩感知的麦克风阵列声源定位算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
203-207
栏目:
信息与通信工程
出版日期:
2015-03-20

文章信息/Info

Title:
Compressed sensing-based sound source localization algorithm for microphone array
作者:
赵小燕12周琳1吴镇扬1
1东南大学信息科学与工程学院, 南京 210096; 2南京林业大学轻工科学与工程学院, 南京 210037
Author(s):
Zhao Xiaoyan1 2 Zhou Lin1 Wu Zhenyang1
1School of Information Science and Engineering, Southeast University, Nanjing 210096, China
2School of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
麦克风阵列 声源定位 压缩感知
Keywords:
microphone array sound source localization compressed sensing
分类号:
TN912.3
DOI:
10.3969/j.issn.1001-0505.2015.02.001
摘要:
为了提高麦克风阵列在高混响、低信噪比环境中的定位性能,提出了一种基于压缩感知的声源定位算法.该算法将声源定位问题转化为稀疏信号的重构问题,将不同位置的房间冲激响应作为特征以构建字典.首先,将麦克风接收信号转换至频域,从具有较高能量的频点中求得一组扩展的频域声源信号矢量,该矢量中包含了声源的位置信息.然后,在频域中整合这些扩展的声源信号矢量,使声源的位置信息更突出,矢量中最大元素所对应的空间位置即为声源的位置估计.仿真实验结果表明,与相位变换加权的可控响应功率(SRP-PHAT)定位算法相比,所提算法的定位成功率更高,对混响的鲁棒性更强,更适合高混响低信噪比环境中的声源位置估计.
Abstract:
To improve the sound source localization performance of microphone arrays under the conditions with high reverberation and low signal-to-noise ratio(SNR), a compressed sensing-based sound source localization algorithm is proposed. In the proposed algorithm, the problem of sound source localization is converted to the reconstruction problem of sparse signal, and the room impulse responses at different locations are treated as the features used to construct the dictionary. First, the received signals of the microphone array are transformed to the frequency domain, and a set of extended source signal vectors in the frequency domain, which contain the location information of the sound source, are calculated from the frequency components with higher power. Then, the extended source signal vectors are integrated in the frequency domain to enhance the location information of the sound source, and the spatial location corresponding to the maximum element of the integrated vector is the location estimation of the sound source. The simulation results show that compared with the steered response power-phase transform(SRP-PHAT)localization algorithm, the proposed algorithm has a higher localization rate, and is more robust against reverberation and more suitable for location estimation under the conditions with high reverberation and low SNR.

参考文献/References:

[1] DiBiase J H. A high-accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays [D]. Providence, Rhode Island,USA: Brown University, 2000.
[2] Zhao Xiaoyan, Tang Jie, Zhou Lin, et al. Accelerated steered response power method for sound source localization via clustering search [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(7): 1329-1338.
[3] Wan Xinwang, Wu Zhenyang. Sound source localization based on discrimination of cross-correlation functions [J]. Applied Acoustics, 2013, 74(1): 28-37.
[4] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[5] Berger C R, Wang Z, Huang J, et al. Application of compressive sensing to sparse channel estimation [J]. IEEE Communications Magazine, 2010, 48(11): 164-174.
[6] Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging [J]. Proceedings of IEEE, 2010, 98(6): 1006-1020.
[7] Gurbuz A C, Cevher V, McClellan J H. Bearing estimation via spatial sparsity using compressive sensing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1358-1369.
[8] Yin Jihao, Chen Tianqi. Direction-of-arrival estimation using a sparse representation of array covariance vectors [J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493.
[9] Li X, Ma X, Yan S, et al. Single snapshot DOA estimation by compressive sampling [J]. Applied Acoustics, 2013, 74(7): 926-930.
[10] Malioutov D, Çetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
[11] 孙磊. 基于压缩感知的阵列信号处理算法研究[D]. 南京:解放军理工大学通信工程学院,2013.
[12] Model D, Zibulevsky M. Signal reconstruction in sensor arrays using sparse representations [J]. Signal Processing, 2006, 86(3): 624-638.
[13] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[14] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.

相似文献/References:

[1]万新旺,吴镇扬.基于自适应频率选择的鲁棒时延估计算法[J].东南大学学报(自然科学版),2010,40(5):890.[doi:10.3969/j.issn.1001-0505.2010.05.002]
 Wan Xinwang,Wu Zhenyang.Robust time delay estimation algorithm based on adaptive frequency selection[J].Journal of Southeast University (Natural Science Edition),2010,40(2):890.[doi:10.3969/j.issn.1001-0505.2010.05.002]
[2]蔡卫平,吴镇扬.一种基于离散时延的鲁棒声源三维定位方法[J].东南大学学报(自然科学版),2009,39(1):1.[doi:10.3969/j.issn.1001-0505.2009.01.001]
 Cai Weiping,Wu Zhenyang.Robust speech source 3D localization method based on discrete time delay[J].Journal of Southeast University (Natural Science Edition),2009,39(2):1.[doi:10.3969/j.issn.1001-0505.2009.01.001]

备注/Memo

备注/Memo:
收稿日期: 2014-09-22.
作者简介: 赵小燕(1986—),女,博士生;吴镇扬(联系人),男,教授,博士生导师,zhenyang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61201345,61302152).
引用本文: 赵小燕,周琳,吴镇扬.基于压缩感知的麦克风阵列声源定位算法[J].东南大学学报:自然科学版,2015,45(2):203-207. [doi:10.3969/j.issn.1001-0505.2015.02.001]
更新日期/Last Update: 2015-03-20