[1]韩晶,解仑,刘欣,等.基于Gross认知重评的机器人认知情感交互模型[J].东南大学学报(自然科学版),2015,45(2):270-274.[doi:10.3969/j.issn.1001-0505.2015.02.014]
 Han Jing,Xie Lun,Liu Xin,et al.Cognitive emotion interaction model of robot based on Gross cognitive reappraisal[J].Journal of Southeast University (Natural Science Edition),2015,45(2):270-274.[doi:10.3969/j.issn.1001-0505.2015.02.014]
点击复制

基于Gross认知重评的机器人认知情感交互模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
270-274
栏目:
自动化
出版日期:
2015-03-20

文章信息/Info

Title:
Cognitive emotion interaction model of robot based on Gross cognitive reappraisal
作者:
韩晶1解仑1刘欣2徐上谋1王志良1
1北京科技大学计算机与通信工程学院, 北京 100083; 2北京科技大学自动化学院, 北京 100083
Author(s):
Han Jing1 Xie Lun1 Liu Xin2 Xu Shangmou1 Wang Zhiliang1
1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
关键词:
认知情感交互模型 情感状态转移概率 Gross认知重评 AVS情感空间 有限状态机
Keywords:
cognitive emotion interaction model emotional state transition probability Gross cognitive reappraisal AVS(arousal-valence-stance)emotion space finite state machine
分类号:
TP242.6
DOI:
10.3969/j.issn.1001-0505.2015.02.014
摘要:
为了增强机器人的认知情感分析能力,依据AVS情感空间和有限状态机(FSM)提出了一种基于Gross认知重评策略的认知情感交互模型.首先,通过分析情感状态之间的欧式距离,研究外界情感刺激对情感状态转移概率的影响;然后,采用有限状态机描述了受到认知重评策略影响的情感状态转移过程;最后,根据情感状态转移概率和7种基本情感的空间坐标,得出受到刺激后机器人情感状态的空间位置.实验结果表明,与不受认知重评策略影响的情感交互模型相比,所提模型能够减少机器人对外界情感刺激的依赖,从而有效地促进了和谐的人机交互体验.
Abstract:
In order to enhance the robot’s cognitive emotion analysis ability, a cognitive emotion interaction model based on the Gross cognitive reappraisal strategy is proposed according to AVS(arousal-valence-stance)emotion space and finite state machine(FSM). By analyzing the Euclidean distance between the emotional states, the influence of external emotional stimuli on the emotional state transition probability is studied. Then, the emotional state transition process affected by the congnitive reappraisal strategy is described by finite state machine. Finally, according to the emotional state transition probability and the space coordinates of seven basic emotions, the space positions of the robot’s emotional state after emotional stimuli are derived. The experimental results show that compared with the emotional interaction model without the cognitive reappraisal strategy, the proposed model can reduce the robot’s dependence on external emotional stimuli, thus effectively promoting harmonious human-computer interaction experience.

参考文献/References:

[1] Rodriguez L F, Ramos F, Wang Y X. Cognitive computational models of emotions[C]//10th IEEE International Conference on Cognitive Informatics and Cognitive Computing. Banff, Canada, 2011: 75-84.
[2] Nanty A, Gelin R. Fuzzy controlled PAD emotional state of a NAO robot [C]//2013 IEEE Conference on Technologies and Applications of Artificial Intelligence(TAAI). Taipei, China, 2013: 90-96.
[3] Russell J A, Bullock M. Multidimensional scaling of emotional facial expressions: similarity from preschoolers to adults [J]. Journal of Personality and Social Psychology, 1985, 48(5): 1290-1298.
[4] Reisenzein R, Hudlicka E, Dastani M, et al. Computational modeling of emotion: toward improving the inter-and intradisciplinary exchange [J]. IEEE Transactions on Affective Computing, 2013, 4(3): 246-266.
[5] Peng X L, Xie L, Liu X, et al. Emotional state transition model based on stimulus and personality characteristics [J]. China Communications, 2013, 10(6): 146-155.
[6] Breazeal C. Function meets style: insights from emotion theory applied to HRI [J]. IEEE Transactions on Systems, Man, and Cybernetics: Part C: Applications and Reviews, 2004, 34(2): 187-194.
[7] 孙佩宏,陶霖密.PAD情感空间中情感距离度量方法[C]//第四届和谐人机环境联合学术会议.中国,武汉,2008:638-645.
  Sun Peihong, Tao Linmi. Emotional distance measurement method in PAD emotional space [C]//The 4th Joint Academic Conference on Harmonious Man-Machine Environment. Wuhan, China, 2008: 638-645.(in Chinese)
[8] McCrae R R, Costa P T. Validation of the five-factor model of personality across instruments and observers [J]. Journal of Personality and Social Psychology, 1987, 51(1): 81-90.
[9] Han M J, Lin C H, Song K T. Robotic emotional expression generation based on mood transition and personality model [J]. IEEE Transactions on Cybernetics, 2013, 43(4): 1290-1303.
[10] Hu X, Xie L, Liu X, et al. Emotion expression of robot with personality [J]. Mathematical Problems in Engineering, 2013, 2013: 132735-1-132735-10.
[11] Hupont I, Baldassarri S, Cerezo E. Facial emotional classification: from a discrete perspective to a continuous emotional space [J]. Pattern Analysis and Applications, 2013, 16(1): 41-54.

备注/Memo

备注/Memo:
收稿日期: 2014-09-05.
作者简介: 韩晶(1990—),女,博士生;解仑(联系人),男,教授,博士生导师,xielun@ustb.edu.cn.
基金项目: 国家自然科学基金面上资助项目(61170115)、国家自然科学基金重点资助项目(61432004)、“十二五”国家科技支撑计划资助项目(2014BAF08B04)、北京市融合网络与泛在业务工程技术研究中心2014年度科技创新基地培育与发展工程专项资助项目.
引用本文: 韩晶,解仑,刘欣,等.基于Gross认知重评的机器人认知情感交互模型[J].东南大学学报:自然科学版,2015,45(2):270-274. [doi:10.3969/j.issn.1001-0505.2015.02.014]
更新日期/Last Update: 2015-03-20