[1]王程遥,张程宾,陈永平,等.剪切流场下液滴碰撞的流变特性[J].东南大学学报(自然科学版),2015,45(2):309-313.[doi:10.3969/j.issn.1001-0505.2015.02.020]
 Wang Chengyao,Zhang Chengbin,Chen Yongping,et al.Rheological behavior of interactive drops in shear flow[J].Journal of Southeast University (Natural Science Edition),2015,45(2):309-313.[doi:10.3969/j.issn.1001-0505.2015.02.020]
点击复制

剪切流场下液滴碰撞的流变特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
309-313
栏目:
能源与动力工程
出版日期:
2015-03-20

文章信息/Info

Title:
Rheological behavior of interactive drops in shear flow
作者:
王程遥1张程宾1陈永平13张林2
1东南大学能源与环境学院, 南京 210096; 2中国工程物理研究院激光聚变研究中心, 绵阳 621900; 3扬州大学水利与能源动力工程学院, 扬州 225127
Author(s):
Wang Chengyao1 Zhang Chengbin1 Chen Yongping13 Zhang Lin2
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
3 School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
关键词:
液滴 碰撞 剪切流场 VOF方法
Keywords:
drop collision shear flow volume of fluid method
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2015.02.020
摘要:
基于VOF液/液相界面追踪方法,建立了不可压缩水/油单乳液液滴动力学模型并进行数值求解,模拟研究了剪切流场条件下2个相同体积的液滴在碰撞过程中的相互作用及变形行为.观察了液滴碰撞过程中液滴的运动轨迹,并对相应的内在机理进行了分析.在剪切流场作用下,两液滴的碰撞过程分为接近、碰撞、分离3个阶段.由于碰撞过程中液滴间的相互挤推作用,液滴分离后,液滴间的侧向质心间距Δy/a增大.此外,分析了液滴碰撞过程中毛细数对液滴间相互作用的影响.两液滴在碰撞靠近过程中,在碰撞区中心处产生一个高压区,随着毛细数Ca从0.2增加到0.4,界面挤压变形越明显,液滴变形系数D也从0.32增加到0.51.
Abstract:
Based on VOF(volume of fluid)liquid-liquid interface tracking method, a model for incompressible water-oil emulsion drop hydrodynamics is developed and numerically solved to study the hydrodynamic interaction and deformation behavior between two equal-sized drops during the collision in a shear flow. The motion trajectory during the collision is observed and the corresponding underlying hydrodynamics are analyzed. Under the shear flow, drop behavior during the collision can be divided into three stages: approach, collision and separation. Due to the hydrodynamic interaction between the drops, the final lateral separation of drop mass centers Δy/a increases after the drop separation. In addition, the effects of the capillary number on the hydrodynamic interaction between two interactive drops are also analyzed. During the collision, a high pressure region is observed at the center of the flow domain. As the capillary number increases from 0.2 to 0.4, the interface deformation is more obvious and the deformation coefficient D of the drop increases from 0.32 to 0.51.

参考文献/References:

[1] Jafari S M, Assadpoor E, He Y H, et al. Re-coalescence of emulsion droplets during high-energy emulsification [J]. Food Hydrocolloids, 2008, 22(7): 1191-1202.
[2] Lobo L, Svereika A. Coalescence during emulsification: 2. role of small molecule surfactants [J]. Journal of Colloid and Interface Science, 2003, 261(2): 498-507.
[3] Ramic A J, Hudson S D, Jamieson A M, et al. Temporary droplet-size hysteresis in immiscible polymer blends [J]. Polymer, 2000, 41(16): 6263-6270.
[4] Taylor G I. The viscosity of a fluid containing small drops of another fluid [J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1932, 138(834): 41-48.
[5] Taylor G I. The formation of emulsions in definable fields of flow [J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1934, 146(858):501-523.
[6] Rallison J M, Acrivos A. A numerical study of deformation and burst of a viscous drop in an extensional flow [J]. Journal of Fluid Mechanics, 1978, 89(1):191-200.
[7] Youngren G K, Acrivos A. On the shape of a gas bubble in a viscous extensional flow [J]. Journal of Fluid Mechanics, 1976, 76(3):433-442.
[8] Stone H A. Dynamics of drop deformation and breakup in viscous fluids [J]. Annual Review of Fluid Mechanics, 1994, 26: 65-102.
[9] Salkin L, Courbin L, Panizza P. Microfluidic breakups of confined droplets against a linear obstacle: the importance of the viscosity contrast [J]. Physical Review E, 2012, 86: 036317-1-036317-6.
[10] Ulloa C, Ahumada A, Cordero M L. Effect of confinement on the deformation of microfluidic drops [J]. Physical Review E, 2014, 89: 033004-1-033004-6.
[11] 刘向东, 陈永平, 张程宾, 等. 双乳液液滴形变及破碎特性[J]. 工程热物理学报, 2012, 33(3): 457-459.
  Liu Xiangdong, Chen Yongping, Zhang Chengbin, et al. Deformation and breakup characteristics of double emulsion drop [J]. Journal of Engineering Thermophysics, 2012, 33(3): 457-459.(in Chinese)
[12] Guido S, Simeone M. Binary collision of drops in simple shear flow by computer-assisted video optical microscopy [J]. Journal of Fluid Mechanics, 1998, 357:1-20.
[13] Tretheway D C, Muraoka M, Leal L G. Experimental trajectories of two drops in planar extensional flow [J]. Physics of Fluids, 1999, 11(5): 971-981.
[14] Hirt C W, Nichols B D. Volume of fluid(VOF)method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[15] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. Journal of Computational Physics, 1992, 100(2): 335-354.

相似文献/References:

[1]赵永利,柳天振.刚性护栏及半刚性护栏与车辆碰撞的安全性模拟分析[J].东南大学学报(自然科学版),2012,42(2):369.[doi:10.3969/j.issn.1001-0505.2012.02.033]
 Zhao Yongli,Liu Tianzhen.Simulation analysis of safety performance of vehicle in collision with rigid guardrail and semi-rigid guardrail[J].Journal of Southeast University (Natural Science Edition),2012,42(2):369.[doi:10.3969/j.issn.1001-0505.2012.02.033]
[2]尹钊,李延龄.Si10团簇与Si(111)面碰撞的紧束缚分子动力学模拟[J].东南大学学报(自然科学版),2003,33(6):815.[doi:10.3969/j.issn.1001-0505.2003.06.032]
 Yin Zhao,Li Yanling.Tight binding molecular dynamics simulations: Si10 cluster in collision with a Silicon(111)surface[J].Journal of Southeast University (Natural Science Edition),2003,33(2):815.[doi:10.3969/j.issn.1001-0505.2003.06.032]
[3]曾庆军,宋爱国,黄惟一.基于主动时延神经网络的从机械手碰撞研究[J].东南大学学报(自然科学版),1999,29(1):25.[doi:10.3969/j.issn.1001-0505.1999.01.005]
 Zeng Qingjun,Song Aiguo,Huang Weiyi.Research on Slave Manipulator Collision Based on Active Time Delay Neural Networks[J].Journal of Southeast University (Natural Science Edition),1999,29(2):25.[doi:10.3969/j.issn.1001-0505.1999.01.005]
[4]施明恒.运动液滴的LEIDENFROST现象[J].东南大学学报(自然科学版),1985,15(3):83.[doi:10.3969/j.issn.1001-0505.1985.03.010]
 Shi Mingheng.The Leidenfrost Temperature of a falling Liquid Droplet[J].Journal of Southeast University (Natural Science Edition),1985,15(2):83.[doi:10.3969/j.issn.1001-0505.1985.03.010]
[5]沈超群,陈永平,施明恒.悬滴与卧滴合并行为特性[J].东南大学学报(自然科学版),2015,45(1):74.[doi:10.3969/j.issn.1001-0505.2015.01.014]
 Shen Chaoqun,Chen Yongping,Shi Mingheng.Coalescence characteristic of pendent and sessile droplets[J].Journal of Southeast University (Natural Science Edition),2015,45(2):74.[doi:10.3969/j.issn.1001-0505.2015.01.014]
[6]黎雅乐,宗周红,黄学漾,等.强震下钢筋混凝土连续梁桥非线性动力响应分析[J].东南大学学报(自然科学版),2016,46(6):1271.[doi:10.3969/j.issn.1001-0505.2016.06.027]
 Li Yale,Zong Zhouhong,Huang Xueyang,et al.Nonlinear dynamic response analysis of reinforced concrete continuous girder bridge under strong earthquake excitations[J].Journal of Southeast University (Natural Science Edition),2016,46(2):1271.[doi:10.3969/j.issn.1001-0505.2016.06.027]
[7]徐俊超,于燕,张军,等.液滴在燃煤细颗粒表面凝结的长大动力学特性[J].东南大学学报(自然科学版),2017,47(3):506.[doi:10.3969/j.issn.1001-0505.2017.03.016]
 Xu Junchao,Yu Yan,Zhang Jun,et al.Kinetics study of droplet growth on surface of coal-fired fine particles[J].Journal of Southeast University (Natural Science Edition),2017,47(2):506.[doi:10.3969/j.issn.1001-0505.2017.03.016]

备注/Memo

备注/Memo:
收稿日期: 2014-12-07.
作者简介: 王程遥(1988—),女,博士生;陈永平(联系人),男,博士,教授,博士生导师, ypchen@seu.edu.cn.
基金项目: 江苏省自然科学基金资助项目(BK20130009,BK20130621)、中国工程物理研究院科学技术发展基金资助项目(2012A0302015).
引用本文: 王程遥,张程宾,陈永平,等.剪切流场下液滴碰撞的流变特性[J].东南大学学报:自然科学版,2015,45(2):309-313. [doi:10.3969/j.issn.1001-0505.2015.02.020]
更新日期/Last Update: 2015-03-20