[1]吴子龙,朱向阳,江舜武,等.纯黏土与砂-黏土混合物渗透特性差异及机理分析[J].东南大学学报(自然科学版),2015,45(2):376-381.[doi:10.3969/j.issn.1001-0505.2015.02.031]
 Wu Zilong,Zhu Xiangyang,Jiang Shunwu,et al.Difference and mechanism analysis on percolation behavior of pure clay and sand-clay mixtures[J].Journal of Southeast University (Natural Science Edition),2015,45(2):376-381.[doi:10.3969/j.issn.1001-0505.2015.02.031]
点击复制

纯黏土与砂-黏土混合物渗透特性差异及机理分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
376-381
栏目:
土木工程
出版日期:
2015-03-20

文章信息/Info

Title:
Difference and mechanism analysis on percolation behavior of pure clay and sand-clay mixtures
作者:
吴子龙1朱向阳2江舜武3刘华山2邓永锋1
1东南大学岩土工程研究所, 南京 210096; 2连云港赣榆港区建设现场指挥部, 连云港 222100; 3江苏新苏港投资发展有限公司, 连云港 222042
Author(s):
Wu Zilong1 Zhu Xiangyang2 Jiang Shunwu3 Liu Huashan2 Deng Yongfeng1
1Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
2Construction Department of Ganyu Port, Lianyungang 222100, China
3Xinsugang Investment Company, Lianyungang 222042, China
关键词:
纯黏土 砂-黏土混合物 归一化指标 渗透特性 砂骨架
Keywords:
pure clay clay-sand mixture normalized index percolation behavior sand skeleton
分类号:
TU43
DOI:
10.3969/j.issn.1001-0505.2015.02.031
摘要:
根据重塑纯黏土和砂-黏土混合物试样的室内固结试验结果,反演了渗透系数,探讨了纯黏土和砂-黏土混合物的渗透特性差异.试验结果表明:常用于评价纯黏土渗透性状的归一化指标e/eL(孔隙比与液限状态孔隙比的比值)能拓展运用于砂-黏土混合物中,但e/eL与渗透系数之间呈现非线性关系,这显著不同于纯黏土的线性关系,其本质原因在于混合物在压缩过程中形成了砂骨架.骨架形成前,纯黏土和砂-黏土混合物的e/eL与渗透系数的2条关系曲线吻合良好,而在骨架形成后,两者的关系曲线存在明显的差异;引入砂-黏土混合物四相体系,从黏土孔隙比和砂孔隙比的角度阐述了砂骨架的形成机制,且对两者渗透性状的差异性进行了详细的机理解释;最后给出了一种可以预测纯黏土和砂-黏土混合物渗透系数的经验公式.
Abstract:
To investigate the difference of percolation behavior between pure clay and sand-clay mixtures, the oedometer consolidation experiments were performed using artificially remolded samples and the permeability was back analyzed. The results show that the normalized index e/eL(the ratio of void ratio to that at liquid limit)commonly used can be extended to the sand-clay mixtures, while the nonlinear relationship between permeability and this index is observed, which is different from a linear relationship is pure clay. This obvious difference is attributed to the formation of the sand skeleton in sand-clay mixtures. Percolation behavior of pure clay and sand-clay mixtures is the same before the formation of the sand skeleton, while the difference occurs after the formation. The four-phase analysis system of clay-sand mixtures is adopted to clarify the formation of the sand skeleton and the difference of percolation behavior between the pure clay and sand-clay mixtures in the view of the sand void ratio and clay void ratio. Finally, an empirical formula to predict the permeability coefficient of pure clay and sand-clay mixtures is proposed.

参考文献/References:

[1] Taylor D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2):161.
[2] Mesri G, Olson R E. Mechanisms controlling the permeability of clays [J]. Clays and Clay Minerals, 1971, 19(3):151-158.
[3] Nagaraj T S, Miura N. Soft clay behavior: analysis and assessment [M]. Rotterdam: A A Balkema, 2001.
[4] Nagaraj T S, Murthy B R S. A critical reappraisal of compression index equations [J]. Géotechnique,1986, 36(1): 27-32.
[5] Nagaraj T S, Pandian N S, Raju P S R N. Stress state-permeability relationships for fine-grained soils[J]. Géotechnique, 1993, 43(2): 333-336.
[6] Achari G, Joshi R C. A reexamination of the permeability index of clays: discussion[J]. Canadian Geotechnical Journal, 1994, 31(1): 140-141.
[7] Sivapullaiah P V, Sridharan A. Liquid limit of soil mixtures[J]. Geotechnical Testing Journal, 1985, 8(3):111-116.
[8] Yeo S S, Shackeiford C D, Evans J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1189-1198.
[9] Fukue M, Okusa S, Nakamura T. Consolidation of sand-clay mixtures[J]. ASTM Special Technical Publication, 1986(892):627-641.
[10] Sivapullaiah P V, Sridharan A, Stalin V K. Hydraulic conductivity of bentonite-sand mixtures[J]. Canadina Geotechnicd Journal, 2000, 37(2):406-413.
[11] Pandian N S, Nagaraj T S, Raju P S R N. Permeability and compressibility behavior of bentonite-sand/soil mixtures[J]. American Society for Testing and Materials, 1995, 18(1):86-93.
[12] Watabe Y, Yamada K, Saitoh K. Hydraulic conductivity and compressibility of mixtures of Nagoya clay with sand or bentonite[J]. Géotechnique, 2011, 61(3):211-219.
[13] Lamb H. Hydrodynamic[M]. 6th ed. London:Cambridge University Press, 1932:160-172.
[14] Lee J O, Cho W J, Chun K S. Swelling pressures of a potential buffer material for high-level waste repository [J]. Journal of the Korean Nuclear Society, 1999, 31(2): 139-150.
[15] Dixon D A, Gray M N, Thomas A W. A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal[J]. Engineering Geology, 1985, 21(3):247-255.
[16] Wang Q, Tang A M, Cui Y J, et al. The effects of technological voids on the hydro-mechanical behavior of compacted bentonite-sand mixtures [J]. Soils and Foundations, 2013, 53(2): 232-245.
[17] Mbonimpa M, Aubertin M, Chapuis R P, et al. Practical pedotransfer functions for estimating the saturated hydraulic conductivity[J]. Geotechnical and Geological Engineering, 2002, 20(3):235-259.

备注/Memo

备注/Memo:
收稿日期: 2014-08-29.
作者简介: 吴子龙(1990—),男,博士生;邓永锋(联系人),男,博士,教授,博士生导师, noden@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378117)、教育部留学回国人员科研启动基金资助项目(2012-1707)、江苏省交通运输科技与成果转化计划资助项目(2012Y01-2).
引用本文: 吴子龙,朱向阳,江舜武,等.纯黏土与砂-黏土混合物渗透特性差异及机理分析[J].东南大学学报:自然科学版,2015,45(2):376-381. [doi:10.3969/j.issn.1001-0505.2015.02.031]
更新日期/Last Update: 2015-03-20