[1]张世义,范颖芳,李宁宁.纳米高岭土改性混凝土与钢筋的黏结性能[J].东南大学学报(自然科学版),2015,45(2):382-386.[doi:10.3969/j.issn.1001-0505.2015.02.032]
 Zhang Shiyi,Fan Yingfang,Li Ningning.Bonding behavior between steel bars and concrete modified with nano-kaolinite clay[J].Journal of Southeast University (Natural Science Edition),2015,45(2):382-386.[doi:10.3969/j.issn.1001-0505.2015.02.032]
点击复制

纳米高岭土改性混凝土与钢筋的黏结性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
382-386
栏目:
材料科学与工程
出版日期:
2015-03-20

文章信息/Info

Title:
Bonding behavior between steel bars and concrete modified with nano-kaolinite clay
作者:
张世义范颖芳李宁宁
大连海事大学道路与桥梁工程研究所, 大连 116026
Author(s):
Zhang Shiyi Fan Yingfang Li Ningning
Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China
关键词:
纳米高岭土 黏结性能 黏结强度 锈蚀率
Keywords:
nano-kaolinite clay bonding behavior bonding strength corrosion rate
分类号:
TU502
DOI:
10.3969/j.issn.1001-0505.2015.02.032
摘要:
为考察纳米高岭土对混凝土与钢筋间黏结性能的影响,利用电流加速腐蚀试验方法,研究了不同腐蚀时间下钢筋锈蚀率与纳米高岭土掺量的关系,分析了纳米高岭土改性混凝土与钢筋之间的黏结滑移关系及黏结强度的变化情况.研究结果表明:纳米高岭土改善了钢筋与混凝土间的黏结性能,降低了混凝土试件的刚度,纳米高岭土掺量为3%的混凝土试件与钢筋间的黏结强度较普通混凝土试件提高约56.55%;混凝土中内掺纳米高岭土能够延缓钢筋锈蚀,纳米高岭土掺量为5%的混凝土试件在腐蚀36 h后,钢筋锈蚀率较普通混凝土试件降低约52%;腐蚀48 h后,纳米高岭土掺量为3%的混凝土试件与钢筋间的黏结强度约为普通混凝土试件的2.16倍.
Abstract:
To study the effect of nano-kaolinite on the bonding behavior of concrete and steel bars, the relationship between the corrosion ratio of steel bars and the nano-kaolinite content at different corrosion times are studied by the electrochemical accelerated corrosion method. And the bond-slip relationship and the change of the bond strength between concrete with nano-kaolinite and steel bars are analyzed. The results show that the addition of nano-kaolinite can improve the bonding behavior of concrete and steel bars and reduce the stiffness of concrete specimen. For the concrete specimen with nano-kaolinite content of 3%, the bonding strength of concrete and steel bars increases by about 56.55% compared with ordinary concrete specimen. Besides, the addition of nano-kaolinite can delay steel corrosion in concrete. After corrosion for 36 h, the corrosion ratio of steel bars in the concrete specimen with nano-kaolinite content of 5% decreases by about 52% than that of ordinary concrete specimen. After corrosion for 48 h in the concrete specimen with nano-kaolinite content of 3%, the bonding strength between concrete and steel bars is about 2.16 times that of ordinary concrete specimen.

参考文献/References:

[1] Zhu W, François R. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam [J]. Construction and Building Materials, 2014, 51: 461-472.
[2] 施锦杰,孙伟.混凝土中钢筋锈蚀研究现状与热点问题分析[J].硅酸盐学报,2010,38(9):1753-1764.
  Shi Jinjie, Sun Wei. Recent research on steel corrosion in concrete [J]. Journal of the Chinese Ceramic Society, 2010, 38(9): 1753-1764.(in Chinese)
[3] 范颖芳.受腐蚀钢筋混凝土构件性能研究[D].大连:大连理工大学水利工程学院,2002.
[4] Chung L, Kim J H J, Yi S T. Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars [J]. Cement and Concrete Composites, 2008, 30(7): 603-611.
[5] 何世钦,贡金鑫.钢筋混凝土梁中锈蚀钢筋黏结性能的试验研究[J].哈尔滨工业大学学报,2006,38(12):2167-2170.
  He Shiqin, Gong Jinxin. Experimental studies on bond characteristics of corroded steel bar in reinforced concrete beams [J]. Journal of Harbin Institute of Technology, 2006, 38(12): 2167-2170.(in Chinese)
[6] 施锦杰,孙伟.电迁移加速氯盐传输作用下混凝土中钢筋锈蚀[J].东南大学学报:自然科学版,2011,41(5):1042-1047.
  Shi Jinjie,Sun Wei. Investigation of steel corrosion induced by accelerated chloride migration in concrete[J]. Journal of Southeast University: Natural Science Edition, 2011, 41(5): 1042-1047.(in Chinese)
[7] Xu H. Impact of low calcium fly ash on steel corrosion rate and concrete-steel interface[J]. The Open Civil Engineering Journal, 2012, 6: 1-7.
[8] Bouteiller V, Cremona C, Baroghel-Bouny V, et al. Corrosion initiation of reinforced concretes based on portland or GGBS cements: chloride contents and electrochemical characterizations versus time [J]. Cement and Concrete Research, 2012, 42(11): 1456-1467.
[9] He X, Shi X. Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials [J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2070: 13-21.
[10] Fan Y, Zhang S, Kawashima S, et al. Influence of kaolinite clay on the chloride diffusion property of cement-based materials [J]. Cement and Concrete Composites, 2014, 45: 117-124.
[11] Poon C S, Kou S C, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete [J]. Construction and Building Materials, 2006, 20(10): 858-865.
[12] 张世义,范颖芳,栾海洋,等.纳米黏土分散性对水泥性能的影响[J].建筑材料学报,2013,16(2):197-202.
  Zhang Shiyi, Fan Yingfang, Luan Haiyang, et al. Effect of disperse condition of nano-clay on behavior of cement paste [J]. Journal of Building Materials, 2013, 16(2): 197-202.(in Chinese)

相似文献/References:

[1]张世义,范颖芳,李宁宁.纳米高岭土改性砂浆抗酸雨侵蚀试验研究[J].东南大学学报(自然科学版),2014,44(3):668.[doi:10.3969/j.issn.1001-0505.2014.03.038]
 Zhang Shiyi,Fan Yingfang,Li Ningning.Experimental study on acid resistance of nano-kaolinite modified cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(2):668.[doi:10.3969/j.issn.1001-0505.2014.03.038]
[2]薛耀,张龙,曹双寅,等.低龄期下CFRP-钢界面黏结性能试验研究[J].东南大学学报(自然科学版),2015,45(2):360.[doi:10.3969/j.issn.1001-0505.2015.02.028]
 Xue Yao,Zhang Long,Cao Shuangyin,et al.Experimental study on bonding behavior of CFRP-to-steel interface under early curing age[J].Journal of Southeast University (Natural Science Edition),2015,45(2):360.[doi:10.3969/j.issn.1001-0505.2015.02.028]
[3]韦芳芳,朱德昌,王海涛,等.冻融环境下CFRP板-钢界面黏结性能试验研究[J].东南大学学报(自然科学版),2020,50(5):803.[doi:10.3969/j.issn.1001-0505.2020.05.002]
 Wei Fangfang,Zhu Dechang,Wang Haitao,et al.Experimental study on bond behavior of CFRP plate-steel interface in freeze-thaw environment[J].Journal of Southeast University (Natural Science Edition),2020,50(2):803.[doi:10.3969/j.issn.1001-0505.2020.05.002]

备注/Memo

备注/Memo:
收稿日期: 2014-09-22.
作者简介: 张世义(1986—),男,博士生; 范颖芳(联系人),女,博士,教授,博士生导师,fanyf72@aliyun.com.
基金项目: 国家自然科学基金资助项目(51178069)、 高等学校青年骨干教师基金资助项目(2011JC031)、中央高校基本科研业务费专项资金资助项目(3132014073)、辽宁省“百万人才工程”资助项目(2010921064)、大连海事大学优秀博士培育基金资助项目(2014YB03).
引用本文: 张世义,范颖芳,李宁宁.纳米高岭土改性混凝土与钢筋的黏结性能[J].东南大学学报:自然科学版,2015,45(2):382-386. [doi:10.3969/j.issn.1001-0505.2015.02.032]
更新日期/Last Update: 2015-03-20