[1]王殿海,汤月华,陈茜,等.基于GPS数据的公交站点区间行程时间可靠性影响因素[J].东南大学学报(自然科学版),2015,45(2):404-412.[doi:10.3969/j.issn.1001-0505.2015.02.036]
 Wang Dianhai,Tang Yuehua,Chen Qian,et al.Influence factors of GPS-based bus travel time reliability between adjacent bus stations[J].Journal of Southeast University (Natural Science Edition),2015,45(2):404-412.[doi:10.3969/j.issn.1001-0505.2015.02.036]
点击复制

基于GPS数据的公交站点区间行程时间可靠性影响因素()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
404-412
栏目:
交通运输工程
出版日期:
2015-03-20

文章信息/Info

Title:
Influence factors of GPS-based bus travel time reliability between adjacent bus stations
作者:
王殿海1汤月华1陈茜2高杨斌3金盛1
1浙江大学建筑工程学院, 杭州 310058; 2杭州市城乡建设委员会, 杭州 310006; 3杭州市综合交通研究中心, 杭州 310006
Author(s):
Wang Dianhai1 Tang Yuehua1 Chen Qian2 Gao Yangbin3 Jin Sheng1
1College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2Hangzhou Urban and Rural Construction Committee, Hangzhou 310006, China
3Hangzhou Urban Comprehensive Transport Research Center, Hangzhou 310006, China
关键词:
公交 行程时间可靠性 高斯混合分布模型 波动指数 延误指数 影响因素
Keywords:
bus travel time reliability Gauss mixture model fluctuation index delay index influence factors
分类号:
U491
DOI:
10.3969/j.issn.1001-0505.2015.02.036
摘要:
为提高公交行程时间预测与信息发布的准确性,借助显著性分析确定影响可靠性预测的主要因素.首先,基于公交GPS数据,采用地图匹配算法建立站点区间行程时间计算方法;其次,针对11组不同路段站点之间的区间行程时间数据,通过拟合优度检验筛选最佳分布模型,并利用最大似然估计获取最优分布模型参数;最后,建立公交行程时间可靠性评价指标体系,分析交通条件、道路条件、采样间隔与行程时间波动指数、延误指数的相关关系.结果表明:三元高斯混合分布模型能以100%的接受率最优地拟合公交行程时间数据,站点区间长度、公交小时流量、采样间隔与行程时间可靠性存在相关关系,而交叉口相对位置则为非关键影响因素.
Abstract:
In order to improve the accuracy of public travel time forecasting and information dissemination, the factors that affect the reliability prediction are determined by means of significance analysis. First, based on GPS(global positioning system)data of public transport, the calculation method of travel time between stations is built up by the map-matching algorithm. Then, the optimum distribution model is built up by using the test of fit goodness with 11 groups of travel time data of different road sections, and the parameters of the optimal model are obtained by the maximum likelihood estimation. Finally, the evaluation index system of the bus travel time reliability is established to analyze the correlation between the traffic condition, road condition, sampling interval and the fluctuation index as well as the delay index. The results show that the Gaussian mixture distribution model can fit the public transport travel time best with the acceptance rate of 100%. The length between two stations, public traffic per hour and sampling interval are correlative to the travel time reliability, while the location of junctions is the non-critical factor.

参考文献/References:

[1] Wu Yong, Xing Jianping, Lu Xiaoyan, et al. Distribution model of urban bus travel time with bus lane [C]//Fourth International Conference on Transportation Engineering. Chengdu, China, 2013: 302-308.
[2] 张宇石.大城市常规公共交通运行可靠性的研究与实例评价[D].北京:北京交通大学交通运输学院,2008.
[3] Meng Qiang, Qu Xiaobo. Bus dwell time estimation at bus bays: a probabilistic approach [J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 61-71.
[4] Ramezani M, Geroliminis N. On the estimation of arterial route travel time distribution with Markov chains [J]. Transportation Research Part B: Methodological, 2012,46(10): 1576-1590.
[5] Clark S, Watling D. Modeling network travel time reliability under stochastic demand [J]. Transportation Research Part B: Methodological,2005, 39(2): 119-140.
[6] Chen A, Ji Z, Recker W. Travel time reliability with risk-sensitive travelers [J]. Journal of the Transportation Research Board, 2002, 1783: 27-33.
[7] Qu Xiaobo, Oh Erwin, Weng Jinxian, et al. Bus travel time reliability analysis: a case study [J]. Proceedings of the ICE-Transport, 2014, 167(3): 178-184.
[8] 张和生, 张毅, 温慧敏,等. 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报:工学版, 2007, 37(3): 533-537.
  Zhang Hesheng, Zhang Yi, Wen Huimin, et al. Estimation approaches of average link travel time using GPS data[J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37(3): 533-537.(in Chinese)
[9] Gurmu Z K, Fan W. Artificial neural network travel time prediction model for buses using only GPS data [J]. Journal of Public Transportation, 2014, 17(2): 45-65.
[10] 陈小鸿, 冯均佳, 杨超. 基于浮动车数据的行程时间可靠度特征研究[J]. 城市交通, 2007, 5(5): 42-45.
  Chen Xiaohong, Feng Junjia, Yang Chao. Research on travel time reliability characteristics based on floating car data[J]. Urban Transport of China, 2007, 5(5): 42-45.(in Chinese)
[11] Du L, Peeta S, Kim Y H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks [J]. Transportation Research Part B: Methodological, 2012, 46(1): 235-252.
[12] 李晓莉. 不同交通流运行状态下的行程时间可靠性分析[J]. 交通运输工程与信息学报, 2013, 11(1): 79-85.
  Li Xiaoli. Analysis of travel time reliability under different traffic flow conditions[J]. Journal of Transportation Engineering and Information, 2013, 11(1): 79-85.(in Chinese)
[13] Yan Yadan, Guo Xiucheng, Li Yan, et al. Bus transit travel time reliability evaluation based on automatic vehicle location data [J]. Journal of Southeast University: English Edition, 2012, 28(1): 100-105.

备注/Memo

备注/Memo:
收稿日期: 2014-04-14.
作者简介: 王殿海(1962—),男,博士,教授,博士生导师, wangdianhai@zju.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2012CB725402).
引用本文: 王殿海,汤月华,陈茜,等.基于GPS数据的公交站点区间行程时间可靠性影响因素[J].东南大学学报:自然科学版,2015,45(2):404-412. [doi:10.3969/j.issn.1001-0505.2015.02.036]
更新日期/Last Update: 2015-03-20