[1]陈雪平,陈绚青,盛永健,等.非正规正交设计的分辨度及其应用[J].东南大学学报(自然科学版),2015,45(2):413-416.[doi:10.3969/j.issn.1001-0505.2015.02.037]
 Chen Xueping,Chen Xuanqing,Sheng Yongjian,et al.Resolution of nonregular design and its applications[J].Journal of Southeast University (Natural Science Edition),2015,45(2):413-416.[doi:10.3969/j.issn.1001-0505.2015.02.037]
点击复制

非正规正交设计的分辨度及其应用()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第2期
页码:
413-416
栏目:
数学、物理学、力学
出版日期:
2015-03-20

文章信息/Info

Title:
Resolution of nonregular design and its applications
作者:
陈雪平12陈绚青2盛永健2林金官1
1东南大学数学系, 南京 211189; 2江苏理工学院数理学院, 常州213001
Author(s):
Chen Xueping12 Chen Xuanqing2 Sheng Yongjian2 Lin Jinguan1
1Department of Mathematics, Southeast University, Nanjing 211189, China
2School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
关键词:
正交设计 工业设计 分辨度 混杂 矩阵象
Keywords:
orthogonal design engineering design resolution confounding matrix image
分类号:
O212.6;TP391
DOI:
10.3969/j.issn.1001-0505.2015.02.037
摘要:
为实现非正规正交设计的最优选择,提出了一种基于矩阵象的广义分辨度指标. 首先,定义了高阶交互作用之间的混杂度量值, 其计算不依赖于水平数的选取,不仅适用于等水平正交设计, 还适用于混合水平正交设计;然后,替换广义方差分析模型中的混杂度量值, 得到了一个非正规正交设计的广义分辨度指标, 满足水平置换不变性. 实例分析结果表明, 所提的广义分辨度对非正规正交设计具有较好的区分能力, 可实现对非正规正交设计的排序和最优选择. 由不同水平上因子的投影频数分布可知,该广义分辨度能够反映出设计点在整个空间中的均匀性, 从而建立了广义分辨度准则和均匀性的联系.
Abstract:
To realize optimal selection for nonregular orthogonal designs, a generalized index of resolution based on matrix images is proposed. First, the measure of confounding between high-order interactions is defined. The confounding values do not depend on the numbers of levels. Hence, this measure can be applied to both the orthogonal designs with fixed-levels and those with mixed-levels. Then, by substituting the confounding values in generalized models of analysis of variance, a generalized index of resolution for nonregular orthogonal designs is obtained, which satisfies the property of coding invariant. The results of the real data analysis demonstrate that the proposed generalized resolution has good classification capacity and can be used for ranking and optimally selecting nonregular orthogonal designs. Moreover, from the distribution of the projected frequencies on different levels, it is shown that the generalized resolution can reflect the uniformity of the design points in overall space, thus the relationship between the generalized resolution criterion and uniformity is established.

参考文献/References:

[1] Bullington R G, Lovin S G, Miller D M, et al. Improvement of an industrial thermostat using designed experiments[J]. Journal of Quality Technology, 1993,25(4): 262-270.
[2] Taguchi G. Introduction to quality engineering[M]. Tokyo,Japan: Asian Productivity Organization, 1986:38-51.
[3] Fries A, Hunter W G. Minimum aberration 2k-p designs[J]. Technometrics, 1980,22(4): 601-608.
[4] Deng L Y, Tang B. Generalized resolution and minimum aberration criteria for PB and other nonregular factorial designs[J]. Statistic Sinica, 1999, 9(4): 1071-1082.
[5] Deng L Y, Tang B X. Minimum G2-aberration for nonregular fractional factorial designs[J]. Ann Statist, 1999,27(6): 1914-1926.
[6] Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs[J]. Ann Statist, 2001,29(2): 549-560.
[7] Pang F, Liu M Q. Indicator function based on complex contrasts and its application in general factorial designs[J]. Journal of Statistical Planning and Inference, 2010, 140(1): 189-197.
[8] Grömping U, Xu H. Generalized resolution for orthogonal arrays[J]. Ann Statist, 2014,42(3):918-939.
[9] Hamada M S, Wu C F J. Analysis of designed experiments with complex aliasing[J]. Journal of Quality Technology, 1992,24(3): 130-137.
[10] Chipman H, Hamada M S, Wu C F J. A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing[J]. Technometrics, 1997, 39(4): 372-381.
[11] Zhang Y S, Lu Y Q, Pang S Q. Orthogonal arrays obtained by orthogonal decomposition of projection matrices[J]. Statistica Sinica, 1999, 9(2): 595-604.
[12] Pang S Q, Zhang Y S, Liu S Y. Further results on the orthogonal arrays obtained by generalized Hadamard product[J]. Statistics and Probability Letters, 2004, 68(1): 17-25.
[13] 陈雪平, 张应山. 强度2混合水平正交表交互作用的混杂度量[J].系统科学与数学, 2012, 32(7): 901-907.
  Chen Xueping, Zhang Yingshan. The confounding measurement of interactions in mixed-level orthogonal arrays with strength 2[J]. J Sys Sci & Math Scis, 2012, 32(7): 901-907.(in Chinese)
[14] 刘文卿. 实验设计[M]. 北京:清华大学出版社, 2005:99-102.

相似文献/References:

[1]严波,薛澄岐,姚干勤.基于本体的虚拟会展产品信息知识表达[J].东南大学学报(自然科学版),2016,46(1):42.[doi:10.3969/j.issn.1001-0505.2016.01.008]
 Yan Bo,Xue Chengqi,Yao Ganqin.Knowledge expression of virtual exhibition product information based on ontology[J].Journal of Southeast University (Natural Science Edition),2016,46(2):42.[doi:10.3969/j.issn.1001-0505.2016.01.008]

备注/Memo

备注/Memo:
收稿日期: 2014-10-08.
作者简介: 陈雪平(1983—),男,博士生,讲师;林金官(联系人),男,博士,教授,博士生导师,jglin@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(11301073,11401094)、教育部博士点专项基金资助项目(20120092110021)、江苏省自然科学基金资助项目(BK20141326)、江苏省普通高校研究生科研创新计划资助项目(2014KYZZ0068)、东南大学优秀博士学位论文基金资助项目(YBJJ1444).
引用本文: 陈雪平,陈绚青,盛永健,等.非正规正交设计的分辨度及其应用[J].东南大学学报:自然科学版,2015,45(2):413-416. [doi:10.3969/j.issn.1001-0505.2015.02.037]
更新日期/Last Update: 2015-03-20