[1]彭冬根,张小松.逆流太阳能溶液集热/再生器再生效率实验分析[J].东南大学学报(自然科学版),2015,45(3):484-490.[doi:10.3969/j.issn.1001-0505.2015.03.013]
 Peng Donggen,Zhang Xiaosong.Experimental analysis on regeneration efficiency of countercurrent solar collector/regenerator[J].Journal of Southeast University (Natural Science Edition),2015,45(3):484-490.[doi:10.3969/j.issn.1001-0505.2015.03.013]
点击复制

逆流太阳能溶液集热/再生器再生效率实验分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
484-490
栏目:
能源与动力工程
出版日期:
2015-05-20

文章信息/Info

Title:
Experimental analysis on regeneration efficiency of countercurrent solar collector/regenerator
作者:
彭冬根1张小松2
1南昌大学建筑工程学院, 南昌 330031; 2东南大学能源与环境学院, 南京 210096
Author(s):
Peng Donggen1 Zhang Xiaosong2
1School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
2School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
太阳能 溶液 再生 效率 逆流
Keywords:
solar energy solution regeneration efficiency countercurrent
分类号:
TK511.3
DOI:
10.3969/j.issn.1001-0505.2015.03.013
摘要:
对1 m×2 m×0.35 m逆流太阳能溶液集热/再生器进行实验研究,分析了影响太阳能溶液集热/再生器再生效率的各种影响因素.实验研究发现,常温溶液再生存在明显两段式分布,溶液再生效率随空气流量的增加先增后减,存在最大值;溶液再生效率随溶液流量增加而递减.加热溶液综合再生效率升高;而加热再生用空气其综合再生效率下降.采用含湿量为20 g/kg再生用湿空气的再生效率比用含湿量为10 g/kg的再生用湿空气的再生效率小0.16.随着太阳辐射强度的提高,溶液再生效率也相应增加.因此,逆流太阳能溶液集热/再生器应在空气较干燥、太阳辐射强度较高时运行,并选取适合的空气流量.
Abstract:
A countercurrent solar solution collector/regenerator(C/R)with experiment platform the size of 1 m(wide)×2 m(long)×0.35 m(high)was used for analyzing the factors influencing regeneration efficiency of solar C/R. It is found that there is an obvious two-stage distribution for regenerating solution at normal temperature. The regeneration efficiency of solution increases first and then decreases with the increase of air mass flow rates and there exists a maximum value. The regeneration efficiency always decreases with the increase of solution flow rates. Heating solution leads to an increase of integrated regeneration efficiency; however, heating regeneration air decreases the integrated regeneration efficiency. The regeneration efficiency is decreased by 0.16 by using humid air of 20 g/kg instead of using humid air of 10 g/kg. The regeneration efficiency increases correspondingly with the increase of the solar radiation intensity. The countercurrent solar solution C/R can operate better in dry air and high solar radiation conditions and a suitable air flow-rate should be selected to achieve better performance.

参考文献/References:

[1] Lychnos G, Davies P A. Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates [J]. Energy, 2012, 40(1): 116-130.
[2] Audah N, Ghaddar N, Ghali K. Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs [J]. Applied Energy, 2011, 88(11): 3726-3736.
[3] Zeidan E B, Aly A A, Hamed A M. Modeling and simulation of solar-powered liquid desiccant regenerator for open absorption cooling cycle [J]. Solar Energy, 2011, 85(11): 2977-2986.
[4] Qi Ronghui, Lu Lin, Yang Hongxing. Investigation on air-conditioning load profile and energy consumption of desiccant cooling system for commercial buildings in Hong Kong [J]. Energy and Buildings, 2012, 49: 509-518.
[5] Kakabaev A, Khandurdyev A, Klyshchaeva O, et al. A large scale solar air conditioning pilot plant and its test results [J]. International Chemical Engineering, 1976, 16(1): 60-64.
[6] Collier R K. The analysis and simulation of an open cycle absorption refrigeration system [J]. Solar Energy, 1979, 23: 357-366.
[7] Gandhidasan P, Al-Farayedhi A A. Thermal performance analysis of a partly closed-open solar regenerator [J]. Journal of Solar Energy Engineering, 1995, 117(2): 151-153.
[8] Khalid C S, Gandhidasan P, Zubair S M. Exergy analysis of a liquid-desiccant-based, hybrid air-conditioning system [J]. Energy, 1998, 23(1): 51-59.
[9] Nelson D J, Wood B D. Evaporation rate model for a natural convection glazed collector/regenerator [J]. Journal of Solar Energy Engineering, 1990, 112(1): 51-57.
[10] Nelson D J, Wood B D. Two-dimensional, analysis and performance of a natural convection glazed collector/regenerator [J]. Solar Engineering, 1987, 2: 933-940.
[11] Kabeel A E. Augmentation of the performance of solar regenerator of open absorption cooling system [J]. Renewable Energy, 2005, 30(3): 327-338.
[12] Yang R, Wang P L. Experimental study of a forced convection solar collector/regenerator for open-cycle absorption cooling [J]. Journal of Solar Energy Engineering, 1994, 116(4): 194-199.
[13] Yang R, Wang P L. The optimum glazing height of a glazed solar collector/regenerator for open-cycle absorption cooling [J]. Energy, 1994, 19(9): 925-931.
[14] Yang R, Wang P L. The effect of heat recovery on the performance of a glazed solar collector/regenerator [J]. Solar Energy, 1995, 54(1): 19-24.
[15] Yang R, Wang P L. Experimental study for a double-glazed forced-flow solar regenerator [J]. Journal of Solar Energy Engineering, 1998, 120(4): 253-259.
[16] Yang R, Wang P L. A simulation study of performance evaluation of single-glazed and double-glazed collectors/regenerators for an open-cycle absorption solar cooling system [J]. Solar Energy, 2001, 71(4): 263-268.
[17] 左远志,杨晓西,丁静.两级式太阳能平板集热型再生器及其稳态性能分析[J].化工进展,2009,28(2):222-225.
  Zuo Yuanzhi,Yang Xiaoxi, Ding Jing. A two-stage collector/regenerator for solar liquid desiccant air conditioning system and its stable performance analysis [J]. Chemical Industry and Engineering Progress, 2009, 28(2): 222-225.(in Chinese)
[18] 左远志,杨晓西,丁静.新型太阳能槽式与平板联合集热溶液双效再生系统[J].化工进展,2009,28(10):1734-1737.
  Zuo Yuanzhi, Yang Xiaoxi, Ding Jing. A novel double-effect liquid desiccant dehumidifier with solar trough and flat plate dual collectors/regenerators [J]. Chemical Industry and Engineering Progress, 2009, 28(10): 1734-1737.(in Chinese)
[19] Alizadeh S, Saman W Y. An experimental study of a forced flow solar collector/regenerator using liquid desiccant [J]. Solar Energy, 2002, 73(5): 345-362.
[20] Alizadeh S, Saman W Y. Modeling and performance of a forced flow solar collector/regenerator using liquid desiccant [J]. Solar Energy, 2002, 72(2): 143-154.
[21] Li Y T, Yang H X. Investigation on solar desiccant dehumidification process for energy conservation of central air-conditioning systems [J]. Applied Thermal Engineering, 2008, 28(10): 1118-1126.
[22] Peng Donggen, Zhang Xiaosong. Modeling and performance analysis of solar air pretreatment collector/regenerator using liquid desiccant [J]. Renewable Energy, 2009, 34(3): 699-705.
[23] Peng Donggen, Zhang Xiaosong. An analytical model for coupled heat and mass transfer processes in solar collector/regenerator using liquid desiccant [J]. Applied Energy, 2011, 88(7): 2436-2444.

相似文献/References:

[1]凌辰,陈振乾,施明恒.太阳能驱动第二类吸收式热泵的模拟研究[J].东南大学学报(自然科学版),2002,32(1):90.[doi:10.3969/j.issn.1001-0505.2002.01.021]
 Ling Chen,Chen Zhenqian,Shi Mingheng.Numerical simulation of an absorption heat pump(Type Ⅱ)driven by solar energy[J].Journal of Southeast University (Natural Science Edition),2002,32(3):90.[doi:10.3969/j.issn.1001-0505.2002.01.021]
[2]张小松,费秀峰,施明恒,等.蓄能型溶液除湿蒸发冷却空调系统中除湿器研究[J].东南大学学报(自然科学版),2003,33(1):72.[doi:10.3969/j.issn.1001-0505.2003.01.018]
 Zhang Xiaosong,Fei Xiufeng,Shi Mingheng,et al.Study on the dehumidifier of the energy storage liquid desiccant cooling systems[J].Journal of Southeast University (Natural Science Edition),2003,33(3):72.[doi:10.3969/j.issn.1001-0505.2003.01.018]
[3]杨卫波,施明恒,陈振乾.太阳能-U形埋管土壤蓄热特性数值模拟与实验验证[J].东南大学学报(自然科学版),2008,38(4):651.[doi:10.3969/j.issn.1001-0505.2008.04.021]
 Yang Weibo,Shi Mingheng,Chen Zhenqian.Numerical simulation and experimental validation of energy storage characteristics of solar-U-tube soil[J].Journal of Southeast University (Natural Science Edition),2008,38(3):651.[doi:10.3969/j.issn.1001-0505.2008.04.021]
[4]李秀伟,张小松,程清,等.光伏/光热驱动的溶液除湿空调系统性能比较[J].东南大学学报(自然科学版),2014,44(2):295.[doi:10.3969/j.issn.1001-0505.2014.02.013]
 Li Xiuwei,Zhang Xiaosong,Cheng Qing,et al.Performance comparison between photovoltaic and solar thermal driven liquid dehumidification air-conditioning system[J].Journal of Southeast University (Natural Science Edition),2014,44(3):295.[doi:10.3969/j.issn.1001-0505.2014.02.013]

备注/Memo

备注/Memo:
收稿日期: 2015-01-12.
作者简介: 彭冬根(1975—),男,博士,副教授,ncu_hvac2013@163.com.
基金项目: 国家自然科学基金资助项目(51266010)、 江西省科技支撑计划资助项目(20123BBG70195).
引用本文: 彭冬根,张小松.逆流太阳能溶液集热/再生器再生效率实验分析[J].东南大学学报:自然科学版,2015,45(3):484-490. [doi:10.3969/j.issn.1001-0505.2015.03.013]
更新日期/Last Update: 2015-05-20