[1]洪亚光,段钰锋,朱纯,等.硫改性椰壳活性炭管道喷射脱汞实验研究[J].东南大学学报(自然科学版),2015,45(3):521-525.[doi:10.3969/j.issn.1001-0505.2015.03.019]
 Hong Yaguang,Duan Yufeng,Zhu Chun,et al.Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection[J].Journal of Southeast University (Natural Science Edition),2015,45(3):521-525.[doi:10.3969/j.issn.1001-0505.2015.03.019]
点击复制

硫改性椰壳活性炭管道喷射脱汞实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
521-525
栏目:
环境科学与工程
出版日期:
2015-05-20

文章信息/Info

Title:
Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection
作者:
洪亚光段钰锋朱纯周强佘敏杜鸿飞
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 东南大学能源与环境学院, 南京 210096
Author(s):
Hong Yaguang Duan Yufeng Zhu Chun Zhou Qiang She Min Du Hongfei
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
椰壳活性炭 载硫 喷射 脱汞 硫形态
Keywords:
coconut shell activated carbon sulfur impregnation injection mercury adsorption sulfur forms
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2015.03.019
摘要:
选用生物质废弃物椰壳制备活性炭脱汞吸附剂,并在不同温度下进行载硫改性.采用N2吸附/脱附、热重质谱联用(TG-MS)、X射线近边吸收结构(XANES)等方法对吸附剂进行孔隙结构和硫存在形态表征.在模拟烟气管道喷射实验装置上进行汞吸附脱除实验研究.结果表明,载硫温度500 ℃时椰壳活性炭汞吸附效率优于商用富硫活性炭.活性炭汞吸附脱除能力由孔隙结构、硫含量与硫存在形态共同决定.硫含量随着载硫温度的提高而降低,孔隙结构参数得到优化.元素硫、噻吩与硫酸盐为活性炭硫的主要存在形态,噻吩为有机硫的主要形态.元素硫与噻吩均有利于汞吸附脱除,其中元素硫效果最优.模拟烟气组分的加入促进了活性炭脱汞效率的提高.
Abstract:
Coconut shell as a kind of biomass wastes was chosen to prepare the mercury removal activated carbon, which was then modified with elemental sulfur at different temperatures. The pore structure and sulfur forms of adsorbents were characterized by nitrogen(N2)adsorption/desorption, thermogravimetry-mass spectrometry(TG-MS), and X-ray absorption near-edge structure(XANES). Experimental studies on Hg removal were conducted in a duct injection system flowed with simulated fuel gas. The results show that coconut shell activated carbon modified with elemental sulfur at 500 ℃ performs a higher mercury adsorption efficiency than commercial activated carbon with high sulfur content. The mercury removal capacity of activated carbon is controlled by its pore structure, sulfur content, and sulfur forms. With the increase of the impregnation temperature, the total sulfur content decreases while the pore structure parameters are optimized. Elemental sulfur, thiophene, and sulfate are the main forms of sulfur deposited on the carbon surface, and thiophene is the main form of organic sulfur. Elemental sulfur and thiophene benefit the Hg adsorption capacity, and elemental sulfur is more effective. The addition of simulated flue gas components can promote mercury adsorption efficiency of activated carbon.

参考文献/References:

[1] Graydon J W, Zhang X Z, Kirk D W. Sorption and stability of mercury on activated carbon for emission control[J]. Journal of Hazardous Materials, 2009, 168(2): 978-982.
[2] Bisson T M, Xu Z, Gupta R, et al. Chemical-mechanical bromination of biomass ash for mercury removal from flue gases[J]. Fuel, 2013, 108(11): 54-59.
[3] 佘敏, 段钰锋, 朱纯, 等. CO2/H3PO4活化与NH4Br改性稻壳焦的脱汞性能实验研究[J]. 东南大学学报: 自然科学版, 2014, 44(2): 321-327.
  She Min, Duan Yufeng, Zhu Chun, et al. Experimental study on mercury adsorption performances of rice husk chars activated by CO2/H3PO4and modified by NH4Br[J]. Journal of Southeast University: Natural Science Edition, 2014, 44(2): 321-327.(in Chinese)
[4] Feng W, Borguet E, Vidic R D. Sulfurization of a carbon surface for vapor phase mercury removal—Ⅱ: sulfur forms and mercury uptake[J]. Carbon, 2006, 44(14): 2998-3004.
[5] Hsi H C, Rood M J, Rostam-Abadi M, et al. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers(ACFs)[J]. Environmental Science & Technology, 2001, 35(13): 2785-2791.
[6] Polte J, Ahner T T, Delissen F, et al. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation[J]. Journal of the American Chemical Society, 2010, 132(4): 1296-1301.
[7] Huggins F E, Huffman G P, Linak W P, et al. Quantifying hazardous species in particulate matter derived from fossil-fuel combustion[J]. Environmental Science & Technology, 2004, 38(6): 1836-1842.
[8] Liu W, Vidic R D, Brown T D. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors[J]. Environmental Science & Technology, 2000, 34(3): 483-488.
[9] Hsi H C, Tsai C Y, Kuo T H, et al. Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation[J]. Bioresource Technology, 2011, 102(16): 7470-7477.
[10] Ie I R, Chen W C, Yuan C S, et al. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon[J]. Journal of Hazardous Materials, 2012, 217(3): 43-50.

备注/Memo

备注/Memo:
收稿日期: 2014-12-20.
作者简介: 洪亚光(1991—),男,硕士生;段钰锋(联系人),男,博士,教授,博士生导师,yfduan@seu.edu.cn.
基金项目: 国家科技支撑计划资助项目(2012BAA02B01-02)、国家自然科学基金资助项目(51376046,51076030)、中央高校基本科研业务费专项资金资助项目、江苏省普通高校研究生科研创新计划资助项目(CXZZ13_0093,KYLX_0115,KYLX_0184)、江苏省产学研联合创新基金资助项目(BY2013073-10).
引用本文: 洪亚光,段钰锋,朱纯,等.硫改性椰壳活性炭管道喷射脱汞实验研究[J].东南大学学报:自然科学版,2015,45(3):521-525. [doi:10.3969/j.issn.1001-0505.2015.03.019]
更新日期/Last Update: 2015-05-20