[1]刘海洪,李先宁,宋海亮.浅水湖泊防控黑臭水体复氧技术[J].东南大学学报(自然科学版),2015,45(3):526-530.[doi:10.3969/j.issn.1001-0505.2015.03.020]
 Liu Haihong,Li Xianning,Song Hailiang.Re-oxygenation technology for prevention and control of black water in shallow lakes[J].Journal of Southeast University (Natural Science Edition),2015,45(3):526-530.[doi:10.3969/j.issn.1001-0505.2015.03.020]
点击复制

浅水湖泊防控黑臭水体复氧技术()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
526-530
栏目:
环境科学与工程
出版日期:
2015-05-20

文章信息/Info

Title:
Re-oxygenation technology for prevention and control of black water in shallow lakes
作者:
刘海洪李先宁宋海亮
东南大学能源环境学院, 南京 210096
Author(s):
Liu Haihong Li Xianning Song Hailiang
School of Energy Environment, Southeast University, Nanjing 210096, China
关键词:
复氧装置 浅水湖泊 黑水团 富营养化 太湖
Keywords:
re-oxygenation device shallow lakes black water group eutrophication Taihu Lake
分类号:
X703.1
DOI:
10.3969/j.issn.1001-0505.2015.03.020
摘要:
试验研究了复氧技术防控浅水湖泊黑臭水体发生的机理和复氧设备.研究发现,当太湖水在藻浓度1.0×108~5.0 ×108 cells/L,水温约28 ℃时,静止过程中水中的CODMn、二甲基三硫醚浓度持续升高,6 d后发生明显的类湖泛的水体黑臭现象,表明采用人工复氧维持水中1.0 mg/L溶解氧的方法可防控藻源性局部黑臭水体发生.研发出3种升流循环复氧装置,结果显示,Ⅲ型装置充氧及能量利用率性能最佳.中试试验显示,Ⅲ型中试溶解氧升高及扩散趋势与fluent模型相符,80 h时溶解氧平均值为3.65 mg/ L,溶解氧平均上升速率为0.045 4 mg/(L·h);升流循环复氧机在模拟黑臭水体应急处置时, 48 h时影响半径可达到50 m.初步证明升流循环复氧装置可作为应急充氧设备, 用于类似太湖的浅水湖泊黑臭水体的治理领域.
Abstract:
The mechanism of re-oxygenation technology to control black water aggregation(BWA)in a shallow lake was explored. Static experiments show that under a temperature of 28 ℃ and the blue algae density of 1.0×108 to 5.0 ×108 cells/L, the concentration of CODMn, dimethyl trisulfide( DMTS )in Taihu Lake continually rises,and finally becomes black and putrid after 6 d. It shows that artificial aeration to maintain dissolved oxygen(DO)content exceeding 1.0 mg/L in water can prevent and control the occurrence of black and putrid water.Three types of up-flowing cycle re-oxygenation(UFCR)devices for shallow lake oxygenation are developed, and type Ⅲ is optimal. The simulated black water pilot test shows that the diffusion trend of the DO for the type Ⅲ device is consistent with the corresponding fluent software model. After 80 h,the concentration of DO is 3.65 mg/L,and the average rising rate is 0.045 4 mg/(L·h). The influence radius of type Ⅲ device can reach 50 m after 48 h when the UFCR is used to treat black and putrid water. This device can be used to prevent and control the emergence of black and putrid water in shallow lakes.

参考文献/References:

[1] Lu G H, Qian M, Zhang J H. Analysis of black water aggregation in Taihu Lake [J]. Water Science and Engineering,2011, 4(4): 374-385.
[2] Duan H, Ma R, Xu X,et al. Two-decade reconstruction of algal blooms in China’s Lake Taihu[J]. Environmental Science and Technology, 2009, 43(10): 3522-3528.
[3] Lanciotti E, Santini C, Lupi E,et al. Actinomycetes, cyanobacteria and algae causing tastes and odours in water of the River Arno used for the water supply of florence[J]. Journal of Water Supply Research and Technology:Aqua, 2003,52(7): 489-500.
[4] Beutel M W. Inhibition of ammonia release from anoxic profundal sediments in lake using hypolimnetic oxygenation[J]. Ecological Engineering, 2006,28(3):271-279.
[5] Schierholz E L, Gulliver J S, Wilhelms S C, et al. Gas transfer from air diffusers[J]. Water Research, 2006, 40(5): 1018-1026.
[6] Simmons J. Algal control and destratification at Hanning-field Reservoir[J]. Water Science and Technology,1998,37(2):309-316.
[7] Cong H B, Huang T L, Chai B B, et al. A new mixing—oxygenating technology for water quality improvement of urban water source and its implication in a reservoir[J]. Renewable Energy, 2009,34(9):2054-2060.
[8] Chai B B, Huang T L, Zhu W H, et al. A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined withwater-lifting aerator[J]. Journal of Environmental of Science, 2011, 23(12):1977-1982.
[9] Ye L, Ni B J, Law Y, et al. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators[J]. Water Research, 2014, 48:257-268.
[10] Xu Yimin, Wang Wei, Yong Hongxuan, et al. Investigation on the cavity backwater of the jet flow from the chute aerators[J]. Procedia Engineering, 2012,31:51-56.
[11] 刘海洪,李先宁,蔡杰.浅水湖泊升流循环复氧装置的研制与性能[J].化工学报,2014, 65(2):718-723.
  Liu Haihong, Li Xianning, Cai Jie. Development and performance of flowing-cycle reoxygenation devices for shallow lake[J]. CIESC Journal,2014, 65(2):718-723.(in Chinese)
[12] Lide D R. CRC handbook of chemistry and physics[M]. 70th ed. Boca Raton,FL,USA: CRC Press, 1990:51-56.
[13] 国家环境保护总局.水和废水监测分析方法 [M]. 4版.北京:中国环境科学出版社,2002:210-284.

备注/Memo

备注/Memo:
收稿日期: 2014-09-10.
作者简介: 刘海洪(1974—),男,博士生,讲师;李先宁(联系人),男,博士,教授,博士生导师,lxn@seu.edu.cn.
基金项目: 国家水专项太湖项目资助项目(2009ZX07101-011).
引用本文: 刘海洪,李先宁,宋海亮.浅水湖泊防控黑臭水体复氧技术[J].东南大学学报:自然科学版,2015,45(3):526-530. [doi:10.3969/j.issn.1001-0505.2015.03.020]
更新日期/Last Update: 2015-05-20