[1]王震,王修信,徐赵东.高轴压比下内置闭合钢管的钢骨砼桥墩曲率延性系数[J].东南大学学报(自然科学版),2015,45(3):563-568.[doi:10.3969/j.issn.1001-0505.2015.03.026]
 Wang Zhen,Wang Xiuxin,Xu Zhaodong.Curvature ductility factor of steel reinforced concrete piers with closed steel tubes under high axial load ratio[J].Journal of Southeast University (Natural Science Edition),2015,45(3):563-568.[doi:10.3969/j.issn.1001-0505.2015.03.026]
点击复制

高轴压比下内置闭合钢管的钢骨砼桥墩曲率延性系数()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
563-568
栏目:
交通运输工程
出版日期:
2015-05-20

文章信息/Info

Title:
Curvature ductility factor of steel reinforced concrete piers with closed steel tubes under high axial load ratio
作者:
王震1王修信1徐赵东12
1东南大学土木工程学院, 南京 210096; 2广西交通科学研究院, 南宁 530007
Author(s):
Wang Zhen1 Wang Xiuxin1 Xu Zhaodong12
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Guangxi Transportation Research Institute, Nanning 530007, China
关键词:
钢骨混凝土桥墩 高轴压比 曲率延性系数 解析公式 数值方法 抗震延性
Keywords:
steel reinforced concrete piers high axial load ratio curvature ductility factor analytic formula numerical method seismic ductility
分类号:
U443.22
DOI:
10.3969/j.issn.1001-0505.2015.03.026
摘要:
为提高震区桥梁抗震延性,选择内置闭合钢管的钢骨混凝土矩形桥墩进行延性设计.考虑到近场罕遇地震下桥墩可能承受较大轴力,根据平截面假定、力的平衡和材料本构关系,分别推导了高轴压比下截面屈服曲率和极限曲率关于截面设计参数的解析公式,并通过数值方法验证了解析公式的正确性.将截面极限曲率和屈服曲率之比定义为曲率延性系数,实现已知截面设计参数定量计算桥墩延性的目的,并以曲率延性系数为指标比较了钢骨混凝土桥墩和箍筋约束混凝土桥墩的抗震延性.研究结果表明:高轴压比下,利用截面设计参数计算曲率延性系数的解析方法是可行的;当耗材相同时,高轴压比下钢骨混凝土桥墩较箍筋约束混凝土桥墩具有更好的抗震延性.
Abstract:
To improve the seismic ductility of bridges in earthquake regions, rectangular steel reinforced concrete(SRC)piers with closed steel tubes were selected for ductility design. Because near field piers under severe earthquake may bear large axial force, the analytic formulae of the yield curvature and limit curvature of the section as for design parameters under the high axial load ratio were deduced according to the flat section assumption, force balance and material constitutive relationship. Also, the analytic formulae were verified by the numerical method. The ratio of the limit curvature to the yield curvature was defined as the curvature ductility factor, which can be calculated when the cross section design parameters were known. According to the curvature ductility factor, the seismic ductility of the SRC piers was compared with that of the confined concrete piers with stirrups. The results show that the analytic method by computing the curvature ductility factor according to the design parameters under the high axial load ratio is feasible. The seismic ductility of the steel reinforced concrete piers is better than that of the confined concrete piers with stirrups under the high axial load ratio with the same consumables.

参考文献/References:

[1] 吴平川,张令心,杨克勇.钢骨混凝土结构抗震研究综述[J].世界地震工程,2007,23(4):13-18.
  Wu Pingchuan, Zhang Lingxin, Yang Keyong. Summary of seismic research on steel reinforced concrete structures[J]. World Earthquake Engineering, 2007, 23(4): 13-18.(in Chinese)
[2] 钱稼茹,康洪震.钢管高强混凝土组合柱抗震性能试验研究[J].建筑结构学报,2009,30(4):85-93.
  Qian Jiaru, Kang Hongzhen. Experimental study on seismic behavior of high-strength concrete-filled steel tube composite columns[J]. Journal of Building Structures, 2009, 30(4): 85-93.(in Chinese)
[3] Ji X D, Kang H Z, Chen X C, et al. Seismic behavior and strength capacity of steel tube-reinforced concrete composite columns[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): 487-505.
[4] Han L H, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular(CFST)structures: members[J]. Journal of Constructional Steel Research, 2014, 100: 211-228.
[5] Park R, Paulay T. Ductile reinforced concrete frames-some comments on the special provisions for seismic design of ACI 318-71 and on capacity design[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1975, 8(1): 70-90.
[6] Park R, Paulay T. Reinforced concrete structures[M]. New York: John Wiley & Sons, 1975: 221-235.
[7] 卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报,2002,35(5):47-51.
  Zhuo Weidong, Fan Lichu. Minimum quantity of confining lateral reinforcement in the potential plastic hinge regions of ductile bridge piers[J]. China Civil Engineering Journal, 2002, 35(5): 47-51.(in Chinese)
[8] Watson S, Zahn F A, Park R. Confining reinforcement for concrete columns[J]. Journal of Structural Engineering, 1994, 120(6): 1798-1824.
[9] 刘庆华,范立础.钢筋混凝土桥墩的延性分析[J].同济大学学报:自然科学版,1998,26(3):245-249.
  Liu Qinghua, Fan Lichu. Theoretical research on the ductility of reinforced concrete bridge piers[J]. Journal of Tongji University: Natural Science Edition, 1998, 26(3): 245-249.(in Chinese)
[10] 叶列平.混凝土结构[M].2版.北京:清华大学出版社,2005:19-20.
[11] 廖飞宇,韩林海.方形钢管混凝土叠合柱的力学性能研究[J].工程力学,2010,27(4):153-162.
  Liao Feiyu, Han Linhai. Performance of concrete-filled steel tube reinforced concrete columns with square sections[J]. Engineering Mechanics, 2010, 27(4): 153-162.(in Chinese)
[12] Kwan A K H, Au F T K, Chau S L. Theoretical study on effect of confinement on flexural ductility of normal and high-strength concrete beams[J]. Magazine of Concrete Research, 2004, 56(5): 299-309.
[13] 韩林海,杨有福.现代钢管混凝土结构技术[M].2版.北京:中国建筑工业出版社,2004:123-125.

备注/Memo

备注/Memo:
收稿日期: 2014-11-14.
作者简介: 王震(1990—),男,博士生;王修信(联系人),男,博士,教授,博士生导师,gsdean2@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378105)、中青年科技创新领军人才资助项目、江苏省“333高层次人才培养工程”资助项目.
引用本文: 王震,王修信,徐赵东.高轴压比下内置闭合钢管的钢骨砼桥墩曲率延性系数[J].东南大学学报:自然科学版,2015,45(3):563-568. [doi:10.3969/j.issn.1001-0505.2015.03.026]
更新日期/Last Update: 2015-05-20