[1]张小松,夏燚,金星.相变蓄能建筑墙体研究进展[J].东南大学学报(自然科学版),2015,45(3):612-618.[doi:10.3969/j.issn.1001-0505.2015.03.035]
 Zhang Xiaosong,Xia Yi,Jin Xing.Review on phase change material building walls[J].Journal of Southeast University (Natural Science Edition),2015,45(3):612-618.[doi:10.3969/j.issn.1001-0505.2015.03.035]
点击复制

相变蓄能建筑墙体研究进展()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
612-618
栏目:
能源与动力工程
出版日期:
2015-05-20

文章信息/Info

Title:
Review on phase change material building walls
作者:
张小松1夏燚13金星2
1东南大学能源与环境学院, 南京210096; 2东南大学建筑学院, 南京210096; 3南京师范大学能源与机械工程学院, 南京210042
Author(s):
Zhang Xiaosong1 Xia Yi13 Jin Xing2
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Architecture, Southeast University, Nanjing 210096, China
3School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
关键词:
相变材料 建筑墙体 蓄热 节能
Keywords:
phase change material building walls thermal storage energy conservation
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2015.03.035
摘要:
对相变材料在墙体中的封装方式(直接混合、宏观封装、微观封装和定形相变材料封装)、相变材料的种类和物性等方面的研究进行了归纳总结.从实验和模拟2个方面,对相变材料位于墙体表面和墙体内部影响室内环境和建筑能耗的研究进行了综述和评价.分析表明,微观封装和定形相变材料的封装效果较好;墙体用相变材料的相变温度一般在20~30 ℃范围内;相变材料层在墙体中的安装位置可分为墙体表面和墙体内部2种,但相变材料层在墙体内的最优位置并不固定,受相变材料物性、墙体材料以及室内外环境工况的影响.通过相变材料与墙体合理高效的结合,可充分发挥相变材料的高蓄热特性,提高墙体的热性能,达到调节室内环境温度、降低建筑能耗的目的.
Abstract:
The encapsulation methods for phase change materials(PCMs)in building walls including direct-mixing, macro-encapsulation, micro-encapsulation, and shape-stabilized PCMs, the kinds of PCMs and their properties are reviewed. The PCMs can be located at the wall surface or inside the wall, the effects of PCMs in both cases on the indoor environment and building energy consumption are evaluated respectively based on experiments and simulation research. The results show that the encapsulation effects of the micro-encapsulation and shape-stabilized PCMs are better. The phase change temperatures of PCMs used in the building walls are usually 20 to 30 ℃. The optimal location of PCMs is not fixed. It is affected by the properties of PCMs, wall material, indoor environment and outdoor environment. By integrating PCMs with the building walls effectively, the high thermal storage property of PCMs can be fully developed and the thermal performance of the building walls is improved. Thus, the indoor air temperature is adjusted and the building energy consumption is reduced.

参考文献/References:

[1] Finley M. BP statistical review of world energy[EB/OL].(2013)[2015-03]. http://www.bp.com.2013.
[2] 江亿, 彭琛, 燕达. 中国建筑节能的技术路线图 [J]. 建设科技, 2012(17):12-19.
[3] 林坤平. 相变蓄能建筑构件应用原理和效果研究 [D]. 北京: 清华大学建筑学院, 2006.
[4] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
[5] Athienitis A K, Liu C, Hawes D, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage [J]. Building and Environment, 1997, 32(5):405-410.
[6] Neeper D A. Thermal dynamics of wallboard with latent heat storage [J]. Solar Energy, 2000, 68(5): 393-403.
[7] Hadjieva M, Stoykov R, Filipova T Z. Composite salt-hydrate concrete system for building energy storage[J]. Renewable Energy, 2000, 19(1/2): 111-115.
[8] Evers A C, Medina M A, Fang Y. Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator [J]. Building and Environment, 2010, 45(8):1762-1768.
[9] Li H, Liu X, Fang G Y. Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings [J]. Energy and Buildings, 2010, 42(10): 1661-1665.
[10] Medina M A, King J B, Zhang M. On the heat transfer rate reduction of structural insulated panels(SIPs)outfitted with phase change materials(PCMs)[J]. Energy, 2008, 33(4):667-678.
[11] Ahmad M, Bontemps A, Sallée H, et al. Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material [J]. Energy and Buildings, 2006, 38(4): 357-366.
[12] Ahmad M, Bontemps A, Sallée H, et al. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material [J]. Energy and Buildings, 2006, 38(6): 673-681.
[13] Bontemps A, Ahmad M, Johannés K, et al. Experimental and modelling study of twin cells with latent heat storage walls[J]. Energy and Buildings, 2011, 43(9): 2456-2461.
[14] Zalewski L, Joulin A, Lassue S, et al. Experimental study of small-scale solar wall integrating phase change material[J]. Solar Energy, 2012, 86(1): 208-219.
[15] Silva T, Vicente R, Soares N, et al. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution[J]. Energy and Buildings, 2012,49(2): 235-245.
[16] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74(1/2): 195-202.
[17] Schossig P, Henning H M, Gschwander S, et al. Micro-encapsulated phase-change materials integrated into construction materials[J]. Solar Energy Materials and Solar Cells, 2005, 89(2/3): 297-306.
[18] Lai C, Chen R H, Lin C Y. Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM[J]. Energy and Buildings, 2010, 42(8): 1259-1266.
[19] Konuklu Y, Unal M, Paksoy H O. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage [J]. Solar Energy Materials and Solar Cells, 2014, 120(1):536-542.
[20] 周国兵, 张寅平, 林坤平, 等. 定形相变贮能材料在暖通空调领域的应用研究 [J]. 暖通空调, 2007, 37(5): 27-32.
  Zhou Guobing, Zhang Yinping, Lin Kunping, et al.Application of shape-stabilized phase change materials for energy storage in HVAC field [J]. Heating Ventilating & Air Conditioning, 2007, 37(5): 27-32.(in Chinese)
[21] 汪意, 杨睿, 张寅平,等. 定形相变材料的研究进展 [J]. 储能科学与技术, 2013, 2(4):362-368.
  Wang Yi, Yang Rui, Zhang Yinping,et al. Recent progress in shape-stabilized phase change materials [J]. Energy Storage Science and Technology, 2013, 2(4):362-368.(in Chinese).
[22] 梁辰, 闫全英, 张林,等. 墙体储能用定形相变石蜡储热性能的实验研究 [J]. 太阳能学报, 2009, 30(12):1627-1630.
  Liang Chen, Yan Quanying, Zhang Lin, et al. Thermal performance analysis of shape-stabilized phase change paraffin used in the wall [J]. Acta Energiae Solaris Sinica, 2009, 30(12):1627-1630.(in Chinese)
[23] Cai Y B, Wei Q F, Huang F L, et al. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites [J]. Applied Energy, 2008, 85(8): 765-775.
[24] Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage [J]. Solar Energy Materials and Solar Cells, 2009, 93(5): 571-576.
[25] Krupa I, Miková G, Luyt A S. Polypropylene as a potential matrix for the creation of shape stabilized phase change materials [J]. European Polymer Journal, 2007, 43(3): 895-907.
[26] Zhou G B, Zhang Y P, Zhang Q L, et al. Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates[J]. Applied Energy, 2007, 84(10): 1068-1077.
[27] Pasupathy A, Velraj R. Effect of double layer phase change material in building roof for year round thermal management [J]. Energy and Buildings, 2008, 40(3):193-203.
[28] 王馨, 张寅平, 肖伟, 等. 相变蓄能建筑围护结构热性能研究进展[J]. 科学通报, 2008, 53(24): 3006-3013.
[29] Zhang Y, Lin K, Jiang Y, et al. Thermal storage and nonlinear heat-transfer characteristics of PCM wallboard [J]. Energy and Buildings, 2008, 40(9):1771-1779.
[30] Kosny J, Kossecka E, Brzezinski A, et al. Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials(PCMs)[J]. Energy and Buildings, 2012, 52(3):122-131.
[31] Borreguero A M, Carmona M, Sanchez M L, et al. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio [J]. Applied Thermal Engineering, 2010, 30(10):1164-1169.
[32] Sayyar M, Weerasiri R R, Soroushian P, et al. Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions[J]. Energy and Buildings, 2014, 75(2):249-255.
[33] Kuznik F, Virgone J. Experimental assessment of a phase change material for wall building use [J]. Applied Energy, 2009, 86(10):2038-2046.
[34] Shi X, Memon S A, Tang W C, et al. Experimental assessment of position of macro encapsulated phasechange material in concrete walls on indoor temperatures and humidity levels [J]. Energy and Buildings, 2014, 71(3):80-87.
[35] Lü Shilei, Feng Guohui, Zhu Neng, et al. Experimental study and evaluation of latent heat storage in phase change materials wallboards [J]. Energy and Buildings, 2007, 39(10):1088-1091.
[36] Yan Quanying, Huo Ran, Li Lisha. Experimental study on the thermal properties of the phase change material wall formed by different methods [J]. Solar Energy, 2012, 86(10):3099-3102.
[37] Carbonari A, de Grassi M, di Perna C, et al. Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls [J]. Energy and Buildings, 2006, 38(5):472-483.
[38] Oliver A. Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat [J]. Energy and Buildings, 2012, 48(5):1-7.
[39] 闫全英, 霍冉, 张林. 定形相变墙体传热性能和力学性能的实验研究 [J]. 建筑节能, 2011, 39(9):42-46.
  Yan Quanying, Huo Ran, Zhang Lin. Experimental research on the heat transfer and mechanical property of shape-stabilized phase change material walls [J]. Building Energy Efficiency, 2011, 39(9):42-46.(in Chinese)
[40] 冯国会, 韩淑伊, 刘馨,等. 相变墙房间夏季夜间通风效果实验 [J]. 沈阳建筑大学学报:自然科学版, 2013, 29(4): 693-697.
  Feng Guohui, Han Shuyi, Liu Xin, et al. Experimental study on night ventilation effect in a phase change wall room in summer [J]. Journal of Shenyang Jianzhu University: Natural Science, 2013, 29(4): 693-697.(in Chinese)
[41] 陈超, 果海凤, 周玮. 相变墙体材料在温室大棚中的实验研究 [J]. 太阳能学报, 2009, 30(3):287-293.
  Chen Chao, Guo Haifeng, Zhou Wei. Experimental research of the composite phase change material in greenhouse [J]. Acta Energiae Solaris Sinica, 2009, 30(3):287-293.(in Chinese)
[42] 邓安仲, 李胜波, 庄春龙,等. 相变储热轻质围护结构夏季隔热节能的实验研究 [J]. 暖通空调, 2009, 39(9):75-79.
  Deng Anzhong, Li Shengbo, Zhuang Chunlong, et al. Experimental study of heat insulation and energy performance of lightweight PCM building envelope [J]. Heating Ventilating & Air Condition, 2009, 39(9):75-79.(in Chinese)
[43] Sá A V, Azenha M, de Sousa H, et al. Thermal enhancement of plastering mortars with phase change materials: experimental and numerical approach [J]. Energy and Buildings, 2012, 49(2):16-27.
[44] Chen C, Guo H, Liu Y, et al. A new kind of phase change material(PCM)for energy-storing wallboard[J]. Energy and Buildings, 2008, 40(5): 882-890.
[45] Diaconu B M, Cruceru M. Novel concept of composite phase change material wall system for year-round thermal energy savings [J]. Energy and Buildings, 2010, 42(10):1759-1772.
[46] Voelker C, Kornadt O, Ostry M. Temperature reduction due to the application of phase change materials [J]. Energy and Buildings, 2008, 40(5):937-944.
[47] Zhou Guobing, Yang Yongping, Wang Xin, et al. Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation [J]. Applied Energy, 2009, 86(1):52-59.
[48] Alawadhi E M. Thermal analysis of a building brick containing phase change material [J]. Energy and Buildings, 2008, 40(3):351-357.
[49] Huang M J, Eames P C, Hewitt N J. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building [J]. Solar Energy Materials and Solar Cells, 2006, 90(13):1951-1960.
[50] Castell A, Martorell I, Medrano M, et al. Experimental study of using PCM in brick constructive solutions for passive cooling [J]. Energy and Buildings, 2010, 42(4):534-540.
[51] Jin Xing, Medina M A, Zhang Xiaosong. On the importance of the location of PCMs in building walls for enhanced thermal performance [J]. Applied Energy, 2013, 106(11):72-78.

备注/Memo

备注/Memo:
收稿日期: 2015-01-20.
作者简介: 张小松(1960—),男,博士,教授,博士生导师,rachpe@seu.edu.cn.
基金项目: 国家自然科学基金重点资助项目(51036001)、“十二五”国家科技支撑计划资助项目(2011BAJ03B14).
引用本文: 张小松,夏燚,金星.相变蓄能建筑墙体研究进展[J].东南大学学报:自然科学版,2015,45(3):613-618. [doi:10.3969/j.issn.1001-0505.2015.03.035]
更新日期/Last Update: 2015-05-20