[1]朱莉,邓娟,徐钦,等.噪声环境中听觉频率跟随响应信号分析[J].东南大学学报(自然科学版),2015,45(4):625-630.[doi:10.3969/j.issn.1001-0505.2015.04.002]
 Zhu Li,Deng Juan,Xu Qin,et al.Analysis of auditory frequency following response signals in noisy environment[J].Journal of Southeast University (Natural Science Edition),2015,45(4):625-630.[doi:10.3969/j.issn.1001-0505.2015.04.002]
点击复制

噪声环境中听觉频率跟随响应信号分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第4期
页码:
625-630
栏目:
计算机科学与工程
出版日期:
2015-07-20

文章信息/Info

Title:
Analysis of auditory frequency following response signals in noisy environment
作者:
朱莉1邓娟12徐钦3吴建华1
1南昌大学信息工程学院, 南昌 330031; 2中国医学科学院&北京协和医学院生物医学工程研究所, 天津 300192; 3清华大学生物医学工程系, 北京 100084
Author(s):
Zhu Li1 Deng Juan12 Xu Qin3 Wu Jianhua1
1Institute of Information Engineering, Nanchang University, Nanchang 330031, China
2Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
3Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
关键词:
听觉频率跟随响应 脑电 听觉认知 幅度谱信噪比 锁相值
Keywords:
auditory frequency following response electroencephalography auditory cognition amplitude spectrum signal-to-noise ratio phase locking value
分类号:
TP301
DOI:
10.3969/j.issn.1001-0505.2015.04.002
摘要:
针对在噪声环境中人的听觉认知机制研究中,频率跟随响应(FFR)分析方法受1/f噪声和工频干扰严重,且局限于包络频率跟随响应(FFRENV),不能直接而全面地反应锁相机制问题,提出了利用时域细节结构频率跟随响应(FFRTFS)信号的幅度谱信噪比和神经元锁相值(PLV)分析FFR的2种新方法.这2种方法均利用拔靴法和傅里叶变换估计出本底噪声以及锁相信息,并利用统计特性和零假设识别出显著有效响应.听觉认知脑电实验结果表明:2种方法均不受1/f噪声和工频影响;PLV方法计算量小,有效响应显著,能直观地体现锁相机制;在基频处,FFRENV的抗噪性好,在谐波处,FFRTFS抗噪性好;在相同环境下,不同的刺激声音频率对FFRENV和FFRTFS的作用不同.以上结论有助于提高听力损伤人群在日常生活中的听觉认知及语言交流能力.
Abstract:
The human auditory cognitive mechanisms in noisy environments are studied. Existing frequency following response(FFR)analysis methods are seriously influenced by 1/f noise and power frequency, and restricted to envelope-related frequency following response(FFRENV), making it unable to reflect the phase locking mechanism directly and comprehensively. To overcome these shortcomings, two approaches are proposed for analyzing FFR: amplitude spectrum signal-to-noise ratio and phasing locking value(PLV)of temporal fine structure-related FFR(FFRTFS). Both of the two utilize the bootstrap method and the Fourier transform to estimate the ground noise and phase-locking information, and recognize the significantly effective response by statistics and zero hypothesis. Electroencephalographic auditory cognition experimental results show that the performances of the two approaches are not affected by either 1/f noise or power frequency. In addition, the PLV method has a low computational complexity with remarkable effective response, and thus it can reflect the phase locking mechanism directly. At the fundamental frequency, FFRENV is robust to additive noises, while at the harmonic frequencies, FFRTFS is robust to additive noises. Under the same environment, frequencies of sources have distinct contributions to FFRENVand FFRTFS. These conclusions are assumed to enhance the hearing impaired person’s capabilities of auditory cognition and verbal communication in daily life.

参考文献/References:

[1] Moore B C J, Patterson R D, Winter I M, et al. Basic aspects of hearing: physiology and perception [M]. New York: Springer, 2013:321-360.
[2] Mesgarani N, David S V, Fritz J B, et al. Mechanisms of noise robust representation of speech in primary auditory cortex [J]. Proceedings of the National Academy of Sciences, 2014, 111(18): 6792-6797.
[3] Ruggles D, Bharadwaj H, Shinn-Cunningham B G. Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication [J]. Proceedings of the National Academy of Sciences, 2011, 108(37): 15516-15521.
[4] Skoe E, Krizman J, Anderson S, et al. Stability and plasticity of auditory brainstem function across the lifespan [J]. Cerebral Cortex, 2015, 25(6):1415-1426.
[5] Du Y, Kong L, Wang Q, et al. Auditory frequency-following response: a neurophysiological measure for studying the “cocktail-party problem” [J]. Neuroscience & Biobehavioral Reviews, 2011, 35(10): 2046-2057.
[6] Du Y, Buchsbaum B R, Grady C L, et al. Noise differentially impacts phoneme representations in the auditory and speech motor systems [J]. Proceedings of the National Academy of Sciences, 2014, 111(19): 7126-7131.
[7] Ruggles D, Bharadwaj H, Shinn-Cunningham B G. Why middle-aged listeners have trouble hearing in everyday settings [J]. Current Biology, 2012, 22(15): 1417-1422.
[8] Lehmann A, Schönwiesner M. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues [J]. PloS One, 2014, 9(1): e85442.
[9] Zhu L, Bharadwaj H, Xia J, et al. A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones [J]. The Journal of the Acoustical Society of America, 2013, 134(1): 384-395.
[10] Xu Q, Ye D. Evaluation of a posteriori Wiener filtering applied to frequency-following response extraction in the auditory brainstem [J]. Biomedical Signal Processing and Control, 2014, 14: 206-216.
[11] Joris P X, Yin T C. Responses to amplitude-modulated tones in the auditory nerve of the cat [J]. The Journal of the Acoustical Society of America, 1992, 91(1): 215-232.
[12] Zeng F G, Nie K, Stickney G S, et al. Speech recognition with amplitude and frequency modulations [J]. Proceedings of the National Academy of Sciences, 2005, 102(7): 2293-2298.
[13] 朱莉.噪声环境中的语音增强和听觉认知的研究 [D].北京:清华大学医学院, 2013.
[14] Brown C A, Bacon S P. Fundamental frequency and speech intelligibility in background noise [J]. Hearing Research, 2010, 266(1): 52-59.
[15] Gockel H E, Carlyon R P, Mehta A, et al. The frequency following response(FFR)may reflect pitch-bearing information but is not a direct representation of pitch [J]. Journal of the Association for Research in Otolaryngology, 2011, 12(6): 767-782.

相似文献/References:

[1]徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629.[doi:10.3969/j.issn.1001-0505.2007.04.017]
 Xu Baoguo,Song Aiguo.Feature extraction and classification of single trial motor imagery EEG[J].Journal of Southeast University (Natural Science Edition),2007,37(4):629.[doi:10.3969/j.issn.1001-0505.2007.04.017]

备注/Memo

备注/Memo:
收稿日期: 2015-01-08.
作者简介: 朱莉(1982—),女,博士,讲师;吴建华(联系人),男,博士,教授,博士生导师,jhwu@ncu.edu.cn.
基金项目: 国家自然科学基金资助项目(61463035)、江西省科技厅科学基金资助项目(20122BAB211020,20142BAB217022)、江西省教育厅青年科学基金资助项目(GJJ14193).
引用本文: 朱莉,邓娟,徐钦,等.噪声环境中听觉频率跟随响应信号分析[J].东南大学学报:自然科学版,2015,45(4):625-630. [doi:10.3969/j.issn.1001-0505.2015.04.002]
更新日期/Last Update: 2015-07-20