[1]熊培银,赖旭芝,吴敏.一类二阶非完整平面欠驱动机械系统位姿控制[J].东南大学学报(自然科学版),2015,45(4):690-695.[doi:10.3969/j.issn.1001-0505.2015.04.014]
 Xiong Peiyin,Lai Xuzhi,Wu Min.Position and attitude control for a class of planar underactuated mechanical system with second order non-holonomic constraints[J].Journal of Southeast University (Natural Science Edition),2015,45(4):690-695.[doi:10.3969/j.issn.1001-0505.2015.04.014]
点击复制

一类二阶非完整平面欠驱动机械系统位姿控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第4期
页码:
690-695
栏目:
自动化
出版日期:
2015-07-20

文章信息/Info

Title:
Position and attitude control for a class of planar underactuated mechanical system with second order non-holonomic constraints
作者:
熊培银1赖旭芝2吴敏2
1中南大学信息科学与工程学院, 长沙 410083; 2中国地质大学自动化学院, 武汉 430074
Author(s):
Xiong Peiyin1 Lai Xuzhi2 Wu Min2
1School of Information Science and Engineering, Central South University, Changsha 410083, China
2School of Automation, China University of Geoscience, Wuhan 430074, China
关键词:
平面欠驱动机械系统 模型降阶 位姿控制 粒子群优化算法
Keywords:
planar underactuated mechanical system model reduction position and attitude control particle swarm optimization
分类号:
TP24
DOI:
10.3969/j.issn.1001-0505.2015.04.014
摘要:
针对第2关节为被动的平面五连杆欠驱动机械系统,提出一种基于模型降阶的末端位姿控制策略.首先,建立系统数学模型,通过维持第1杆初始状态,将系统降阶为一阶非完整系统;其次,通过分阶段控制驱动杆角度,将系统降阶为3个具有完整约束的两连杆子系统,并基于各子系统积分特性获得驱动杆与欠驱动杆之间的角度约束关系;然后,根据角度约束关系,利用粒子群优化算法计算系统末端位姿对应的各连杆角度;最后,基于李雅普诺夫函数分阶段设计系统控制律,实现系统从初始位姿到目标位姿的控制.仿真结果验证了所提控制策略的有效性.
Abstract:
A piecewise position and attitude control strategy based on model reduction for the planar five-link underactuated system with a passive second joint is proposed. First, a mathematical model of the system is built, and it is reduced to the first order non-holonomic system by controlling the first link. Then, three two-link subsystems with holonomic constraints are reduced by controlling the angels of the actuated links in stages, and the angle constraint relationships are obtained by employing the integral characteristics of the subsystems. Next, the target angles of actuated links are calculated by the particle swarm optimization algorithm based on the angle constraint relationships and target position. Finally, the control laws designed by Lyapunov functions achieve the control objective from an initial position and attitude to the target position and attitude. Simulation results demonstrate the validity of the proposed control method.

参考文献/References:

[1] Liu Y, Yu H N. A survey of underactuated mechanicalsystems[J]. IET Control Theory & Applications, 2013, 7(7): 921-935.
[2] Zhang A C, She J H, Lai X Z, et al. Motion planning and tracking control for an acrobot based on a rewinding approach[J]. Automatica, 2013, 49(1): 278-284.
[3] 孙宁,方勇纯.一类欠驱动系统的控制方法综述[J].智能系统学报,2011,6(3):200-207.
  Sun Ning,Fang Yongchun. A review for the control of a class of underactuated systems[J]. CAAI Transactions on Intelligent Systems, 2011, 6(3): 200-207.(in Chinese)
[4] Oriolo G, Nakamur Y. Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators[C]//Proceedings of 30th IEEE Conference on Decision and Control. Brighton, England, 1991: 2398-2403.
[5] 赖旭芝,佘锦华,吴敏.欠驱动机械系统控制[M].北京:科学出版社, 2013: 18-50.
[6] 盛洋,赖旭芝,吴敏.基于模型降阶的平面三连杆欠驱动机械系统位置控制[J].自动化学报,2014,40(7):1303-1310.
  Sheng Yang, Lai Xuzhi, Wu Min. Position control of a planar three-link underactuated mechanical system based on model reduction[J]. Acta Automatica Sinica, 2014, 40(7): 1303-1310.(in Chinese)
[7] de Luca A, Mattone R, Oriolo G. Stabilization of an underactuated planar 2R manipulator[J]. International Journal of Robust and Nonlinear Control, 2000, 10(4): 181-198.
[8] Kobayashi K, Yoshikawa T. Controllability of under-actuated planar manipulators with one unactuated joint[J]. The International Journal of Robotics Research, 2002, 21(5/6): 555-561.
[9] De Luca A, Mattone R, Oriolo G. Underactuated manipulators: control properties and techniques[J]. Machine Intelligence and Robotic Control, 2002, 4(3):113-126.
[10] 陈钢,张龙,贾庆轩,等.基于主任务零空间的空间机械臂重复运动规划[J]. 宇航学报,2013,34(8):1063-1071.
  Chen Gang, Zhang Long, Jia Qingxuan, et al. Repetitive motion planning for space manipulator based on null space of primary task[J]. Journal of Astronautics, 2013, 34(8): 1063-1071.(in Chinese)
[11] Gazi V, Passino K M. Swarm stability and optimization[M]. Berlin:Springer, 2011: 251-279.
[12] LaSalle J P. Stability theory for ordinary differential equations[J]. Journal of Differential Equations, 1968, 4(1): 57-65.

备注/Memo

备注/Memo:
收稿日期: 2014-12-25.
作者简介: 熊培银(1979—),男,博士生; 赖旭芝(联系人), 女,博士,教授,博士生导师,laixz@cug.edu.cn.
基金项目: 国家自然科学基金资助项目(61374106)、湖北省自然科学基金计划资助项目(2015CFA010).
引用本文: 熊培银,赖旭芝,吴敏.一类二阶非完整平面欠驱动机械系统位姿控制[J].东南大学学报:自然科学版,2015,45(4):690-695. [doi:10.3969/j.issn.1001-0505.2015.04.014]
更新日期/Last Update: 2015-07-20