[1]施娟,陈振乾,马强.多孔泡沫金属内气泡动力学行为的格子波尔兹曼方法模拟[J].东南大学学报(自然科学版),2015,45(4):734-737.[doi:10.3969/j.issn.1001-0505.2015.04.021]
 Shi Juan,Chen Zhenqian,Ma Qiang.Numerical study on bubble dynamic behavior in porous media by lattice Boltzmann method[J].Journal of Southeast University (Natural Science Edition),2015,45(4):734-737.[doi:10.3969/j.issn.1001-0505.2015.04.021]
点击复制

多孔泡沫金属内气泡动力学行为的格子波尔兹曼方法模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第4期
页码:
734-737
栏目:
能源与动力工程
出版日期:
2015-07-20

文章信息/Info

Title:
Numerical study on bubble dynamic behavior in porous media by lattice Boltzmann method
作者:
施娟陈振乾马强
东南大学能源与环境学院, 南京 210096
Author(s):
Shi Juan Chen Zhenqian Ma Qiang
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
多孔泡沫金属 气泡动力学行为 格子Boltzmann方法
Keywords:
porous metal foam bubble dynamic behavior lattice Boltzmann method
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2015.04.021
摘要:
为了研究多孔泡沫金属骨架对气泡上升运动的影响,基于多孔泡沫金属的骨架结构,建立了多孔泡沫金属内气泡动力学行为的物理模型,并利用格子Boltzmann方法(LBM)模拟孔隙尺度下气-液两相流动.考虑多孔泡沫金属内流体间以及流固间的相互作用力,采用多组分单松弛的Shan-Chen模型,模拟气泡在泡沫金属孔隙结构内的运动形态.对含有泡沫金属以及不含泡沫金属的计算区域内气液两相流的密度场进行了比较.实验结果表明:泡沫金属骨架的存在改变了两相流流场,同时使气泡上升过程中边界受到挤压,从而改变气泡的上升速度;随着重力场的增大,流体区域内有序排列的泡沫金属结构可以加快气泡上升速度.
Abstract:
In order to study the effects of porous metal foams on the bubble rising motion, a physical model of the bubble dynamic behavior in porous metal foams is developed, which takes into account the structure of the metal foam. The lattice Boltzmann method(LBM)is applied to simulate the vapor-liquid two phase flow in the pore scale. The Shan-Chen model with multi-component and single relaxation time is used to track the motion morphology of bubble in the pore structure of the metal foam, considering the interparticle interaction between fluid-fluid and fluid-solid wall. The density distributions of the vapor-liquid two phase flow in the simulation domain with and without metal foam are compared to that without metal foam. The simulation results show that two-phase flow field and the interface of bubble are influenced by the metal foam structure. Therefore, the bubble rising velocity is changed. Meanwhile, the bubble rising velocity increases with the increase of gravity if there is metal foam with ordered array in the fluid.

参考文献/References:

[1] Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams [J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031.
[2] Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam [J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836.
[3] Xu J L, Ji X B, Zhang W, et al. Pool boiling heat transfer of ultra-light copper foam with open cells [J]. International Journal of Multiphase Flow, 2008, 34(11): 1008-1022.
[4] Zhao C Y, Lu W, Tassou S A. Flow boiling heat transfer in horizontal metal-foam tubes [J]. Journal of Heat Transfer, 2009, 131(12): 121002-01-121002-08.
[5] Shi J, Jacobi A M, Chen Z. Experimental study of subcooled pool boiling heat transfer on metal foam [C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver, Colorado, USA, 2011: 559-564.
[6] Chen L, Kang Q, Mu Y, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications [J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236.
[7] Kikkinides E S, Yiotis A G, Kainourgiakis M E, et al. Thermodynamic consistency of liquid-gas lattice Boltzmann methods: interfacial property issues [J]. Physical Review E, 2008, 78(3): 036702-01-036702-16.
[8] Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows [J]. Computers & Fluids, 2012, 53: 93-104.
[9] Sun T, Li W, Yang S. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method [J]. International Journal of Heat and Fluid Flow, 2013, 44: 120-129.
[10] Dai Q, Yang L. LBM numerical study on oscillating flow and heat transfer in porous media [J]. Applied Thermal Engineering, 2013, 54(1): 16-25.

备注/Memo

备注/Memo:
收稿日期: 2015-01-02.
作者简介: 施娟(1984—),女,博士生;陈振乾(联系人),男,博士,教授,博士生导师, zqchen@seu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2012BAA07B02)、江苏省过程强化与新能源装备技术重点实验室(南京工业大学)开放课题基金资助项目.
引用本文: 施娟,陈振乾,马强.多孔泡沫金属内气泡动力学行为的格子波尔兹曼方法模拟[J].东南大学学报:自然科学版,2015,45(4):734-737. [doi:10.3969/j.issn.1001-0505.2015.04.021]
更新日期/Last Update: 2015-07-20