[1]窦建平,李俊,苏春.可重构流水线构形选择和作业调度集成优化[J].东南大学学报(自然科学版),2015,45(5):886-896.[doi:10.3969/j.issn.1001-0505.2015.05.013]
 Dou Jianping,Li Jun,Su Chun.Integrated optimization of configuration selection and job scheduling for reconfigurable flow lines[J].Journal of Southeast University (Natural Science Edition),2015,45(5):886-896.[doi:10.3969/j.issn.1001-0505.2015.05.013]
点击复制

可重构流水线构形选择和作业调度集成优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第5期
页码:
886-896
栏目:
机械工程
出版日期:
2015-09-20

文章信息/Info

Title:
Integrated optimization of configuration selection and job scheduling for reconfigurable flow lines
作者:
窦建平1李俊2苏春1
1东南大学机械工程学院, 南京 211189; 2东南大学自动化学院, 南京210096
Author(s):
Dou Jianping 1 Li Jun 2 Su Chun 1
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Automation, Southeast University, Nanjing 210096, China
关键词:
可重构流水线 构形选择 作业调度 多目标优化 粒子群优化
Keywords:
reconfigurable flow line configuration selection job scheduling multi-objective optimization particle swarm optimization
分类号:
TH165;TP391
DOI:
10.3969/j.issn.1001-0505.2015.05.013
摘要:
针对可混流生产同零件族多种零件的可重构流水线(RFL),以最小化生产周期总成本和最小化拖期惩罚为目标,建立了RFL构形选择和作业调度集成优化的混合整数多目标规划数学模型.采用LINGO软件进行案例计算验证了模型的正确性.随后,融合拥挤距离计算和外部Pareto解集档案构建技术提出了一种快速获取集成优化问题Pareto解集的多目标粒子群算法(MoPSO).在MoPSO中,采用实数和整数混合编码的粒子表征RFL的构形和调度方案,所设计的粒子编码/解码方法和更新机制可保证粒子所对应解的可行性.将MoPSO与NSGA-Ⅱ算法应用于3个案例,通过案例计算对比验证了MoPSO算法的有效性.计算结果表明,MoPSO获取的非支配解的质量和计算效率均优于NSGA-Ⅱ.
Abstract:
To achieve the reconfigurable flow line(RFL)in which multiple parts within the same part family can be produced simultaneously, a mixed integer multi-objective programming model is developed for integrated optimization of RFL configuration selection and job scheduling. The two objectives are to minimize total cost of concerned demand period and to minimize the penalty of tardiness. The validity of the model is illustrated by solving the model of a case using LINGO softaware. Then, a multi-objective particle swarm optimization(MoPSO)is proposed to obtain a set of Pareto solutions quickly through combining the techniques of computing crowding distance and constructing external Pareto solution archive. In the MoPSO, a hybrid encoding composed of real and integer is developed to represent the configuration and scheduling of RFL. The designed encoding/decoding method along with the particle updating mechanism ensures that any particle corresponds to a feasible solution. The effectiveness of the MoPSO is verified by the comparison results between MoPSO and the NSGA-Ⅱ algorithm in three cases. The computation results also indicate that the proposed MoPSO is superior to the NSGA-Ⅱ algorithm with respect to quality of identified non-dominated solutions and computation efficiency.

参考文献/References:

[1] Koren Y, Heisel U, Jovane F. Reconfigurable manufacturing systems[J]. Annals of the CIRP, 1999, 48(2): 527-540.
[2] Ye H, Liang M. Simultaneous modular product scheduling and manufacturing cell reconfiguration using a genetic algorithm[J]. Journal of Manufacturing Science and Engineering, 2006, 128(4): 984-995.
[3] Yu J M, Doh H H, Kim J S, et al. Scheduling for a reconfigurable manufacturing system with multiple process plans and limited pallets/fixtures[J]. World Academy of Science, Engineering and Technology, 2012, 62: 232-237.
[4] Tang L. Design and reconfiguration of RMS for part family[D]. Ann Arbor, MI, USA: University of Michigan, 2005.
[5] Youssef A M A, Eimaraghy H A. Optimal configuration selection for reconfigurable manufacturing systems[J]. International Journal of Flexible Manufacturing System, 2007, 19(2): 67-106.
[6] Dou J P, Dai X Z, Meng Z D. Optimisation for multi-part flow-line configuration of reconfigurable manufacturing system using GA[J]. International Journal of Production Research, 2010, 48(14): 4071-4100.
[7] 楼洪梁.多零件族变批量可重构制造系统组态与组态路径设计[D]. 杭州: 浙江大学机械与能源工程学院,2006.
[8] Dou J P, Dai X Z, Meng Z D. Graph theory-based approach to optimize single-product flow-line configurations of RMS[J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(9): 916-931.
[9] Saxena L K, Jain P K. A model and optimisation approach for reconfigurable manufacturing system configuration design[J]. International Journal of Production Research, 2012, 50(12): 3359-3381.
[10] Hasan F, Jain P K, Kumar D. Optimum configuration selection in reconfigurable manufacturing system involving multiple part families[J]. Opsearch, 2014, 51(2): 297-311.
[11] Goyal K K, Jain P, Jain M. Optimal configuration selection for reconfigurable manufacturing system using NSGA Ⅱ and TOPSIS[J]. International Journal of Production Research, 2012, 50(15): 4175-4191.
[12] Bensmaine A, Dahane M, Benyoucef L. A non-dominated sorting genetic algorithm based approach for optimal machines selection in reconfigurable manufacturing environment[J]. Computers & Industrial Engineering, 2013, 66(3): 519-524.
[13] 陈勇.可重构制造系统的非线性重构和车间调度[D]. 南京: 东南大学自动化学院,2008.
[14] Bensmaine A, Dahane M, Benyoucef L. A new heuristic for integrated process planning and scheduling in reconfigurable manufacturing systems[J]. International Journal of Production Research, 2014, 52(12): 3583-3594.
[15] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[16] Wang H. Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions[J]. Expert Systems, 2005, 22(2):78-85.
[17] Sawik T. Batch versus cyclic scheduling of flexible flow shops by mixed-integer programming[J]. International Journal of Production Research, 2012, 30(18): 5017-5034.
[18] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia, 1995: 1942-1948.
[19] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
[20] Deb K. C code of NSGA-Ⅱ [EB/OL].(2002-01-05)[2014-02-01].http://www.egr.msu.edu/~kdeb/codes/nsga2/nsga2code.ta.

备注/Memo

备注/Memo:
收稿日期: 2015-04-29.
作者简介: 窦建平(1980—),男,博士,副教授,jp.dou@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51105076,51575108).
引用本文: 窦建平,李俊,苏春.可重构流水线构形选择和作业调度集成优化[J].东南大学学报:自然科学版,2015,45(5):886-896. [doi:10.3969/j.issn.1001-0505.2015.05.013]
更新日期/Last Update: 2015-09-20