[1]奚如如,王兴松,韩亚丽.表征被动双足行走的二维无边轮辐的动力学及稳定性分析[J].东南大学学报(自然科学版),2015,45(6):1066-1074.[doi:10.3969/j.issn.1001-0505.2015.06.008]
 Xi Ruru,Wang Xingsong,Han Yali.Dynamics and stability analysis of 2D rimless wheel revealing passive bipedal walking[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1066-1074.[doi:10.3969/j.issn.1001-0505.2015.06.008]
点击复制

表征被动双足行走的二维无边轮辐的动力学及稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第6期
页码:
1066-1074
栏目:
机械工程
出版日期:
2015-11-20

文章信息/Info

Title:
Dynamics and stability analysis of 2D rimless wheel revealing passive bipedal walking
作者:
奚如如1王兴松1韩亚丽2
1东南大学机械工程学院, 南京211189; 2南京工程学院机械工程学院, 南京211167
Author(s):
Xi Ruru1 Wang Xingsong1 Han Yali2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
无轮辐轮 被动双足行走 庞加莱映射 不动点 极限环
Keywords:
rimless wheel passive bipedal walking Poincare map fixed-point limit cycle
分类号:
TH113
DOI:
10.3969/j.issn.1001-0505.2015.06.008
摘要:
为验证具有被动行走特征的二维无边轮辐稳定极限环的存在,使静止于斜坡上的无边轮辐以不同的初始运动条件开始运动,对其进行运动学及动力学分析,建立表征被动双足行走理论的无边轮辐模型的无碰撞阶段运动方程及碰撞瞬间切换方程.利用庞加莱映射理论进行斜坡上滚动的无边轮辐运动稳定性分析,结果表明,不动点与极限环为轮辐运动稳定性的表征参数,且不动点与极限环的存在与轮辐的辐条数目、惯性矩参数、运动初始条件和斜坡角度有关.利用MATLAB软件对不动点与极限环的存在进行仿真分析,验证了在一定的斜坡角度和初始运动条件下无边轮辐可实现稳定持续的下坡滚动.基于无边轮辐模型可建立斜坡上行走的无驱动被动双足行走模型,将下坡时由重力提供的驱动力等同于主动驱动力施加到平面上行走的无驱动被动双足行走模型,可以减少驱动能量损耗及简化行走控制理论.
Abstract:
To verify the existence of the stable limit cycle of 2D rimless wheel revealing passive bipedal walking, different initial motion conditions are applied to the rimless wheel standing still on a slope and kinematics and dynamics analysis are achieved. Equations of motion between collisions and under collision conditions are established. The theory of Poincare map is applied to conduct the analysis of motion stability of the rimless wheel rolling on the slope. The result indicates that the fixed point and the limit cycle are characterization parameters of the motion stability, and the existence of the fixed point and the limit cycle is related to the number of spokes, the inertia moment parameter, initial motion conditions and the slope angle. The simulation based on the MATLAB is conducted to validate the existence of the fixed point and the limit cycle, and it is verified that the rimless wheel can roll down the slope stably and continuously under certain slope angles and initial motion conditions. The driven-less passive bipedal walking model rolling on the slope can be built based on the model of the rimless wheel. The rolling down power from the gravity can be taken as the active driven power, which can be applied to the driven-less passive bipedal walking model for walking on the level surface to reduce the driven energy loss and simplify the walking control theory.

参考文献/References:

[1] McGeer T. Passive dynamic walking [J]. The International Journal of Robotics Research, 1990, 9(2): 62-82.
[2] McGeer T. Passive dynamic biped catalogue [C]//Proceedings of the Experimental Robotics Ⅱ: the 2nd International Symposium. Toulouse, France, 1991, 190:463-490.
[3] 毛勇, 王家廞, 贾培发, 等. 双足被动步行研究综述[J]. 机器人, 2007, 29(3): 274-280.
  Mao Yong, Wang Jiaxin, Jia Peifa, et al. Passive dynamic biped walking: a survey [J]. Robot, 2007, 29(3): 274-280.(in Chinese)
[4] Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers [J]. Science, 2005, 307(5712): 1082-1085.
[5] Coleman M J, Chatterjee A, Ruina A. Motions of a rimless spoked wheel: a simple three-dimensional system with impacts [J]. Dynamics and Stability of Systems, 1997, 12(3): 139-159.
[6] Coleman M J. A stability study of a three-dimensional passive-dynamic model of human gait [D]. Ithaca, NY, USA: Cornell University, 1998.
[7] Coleman M J. Dynamics and stability of a rimless spoked wheel: a simple 2D system with impacts [J]. Dynamical Systems an International Journal , 2010, 25(2): 215-238.
[8] Hodgins J K. Bipedal gait transitions [C]//Proceedings of the IEEE International Conference on Robotics and Automation. Sacramento, CA, USA, 1991: 2092-2097.
[9] Anderson S O, Wisse M, Atkeson C G, et al. Powered bipeds based on passive dynamic principles [C]//Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots. Tsukuba, Japan, 2005: 110-116.
[10] Asano F, Kawamoto J. Modeling and analysis of passive viscoelastic-legged rimless wheel that generates measurable period of double-limb support [J]. Multibody System Dynamics, 2014, 31(2):111-126.
[11] Beigzadeh B, Meghdari A, Sohrabpour S. Passive dynamic object manipulation: a framework for passive walking systems [J]. Journal of Multi-Body Dynamics, 2013, 227(2): 185-198.
[12] Sabaaapour M R, Hairi-Yazdi M R, Beigzadeh B. Towards passive turning in biped walkers [J]. Procedia Technology, 2014, 12(1): 98-104.
[13] Gamus B, Or Y. Dynamic bipedal walking under stick-slip transitions [J]. Society for Industrial and Applied Mathematics: Journal of Applied Dynamical Systems, 2015, 14(2): 609-642.
[14] 刘振泽. 欠驱动步行机器人运动学机理与控制策略研究[D]. 长春: 吉林大学通信工程学院, 2007.
[15] 刘振泽, 周长久, 田彦涛. Compass-like无动力双足行走机器人的运动状态[J]. 吉林大学学报: 工学版, 2007, 37(5): 1175-1180.
  Liu Zhenze, Zhou Changjiu, Tian Yantao. Analysis of compass-like passive biped robot locomotion [J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37(5): 1175-1180.(in Chinese)
[16] 刘丽梅. 被动动态行走双足机器人的稳定性分析与控制研究[D]. 长春: 吉林大学通信工程学院, 2011.
[17] 胡运富. 无膝双足被动机器人的运动特性和稳定性研究[D]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2009.
[18] 郭欣. 双足被动机器人行走模式的设计构想[D]. 北京: 北京邮电大学自动化学院, 2009.
[19] 胡运富, 朱延河, 吴晓光, 等. 被动无边轮辐运动特性的Adams仿真分析[J]. 哈尔滨工业大学学报, 2010, 42(7): 1076-1079.
  Hu Yunfu, Zhu Yanhe, Wu Xiaoguang, et al. Adams simulation analysis of motion characteristic of passive rimless-wheel [J]. Journal of Harbin Institute of Technology, 2010, 42(7): 1076-1079.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2015-03-12.
作者简介: 奚如如(1985—),女,博士生;王兴松(联系人),男,博士,教授,博士生导师,xswang@seu.edu.cn.
基金项目: 国家自然科学基金青年基金资助项目(51205182)、江苏省普通高校研究生科研创新计划资助项目(CXZZ12_0092).
引用本文: 奚如如,王兴松,韩亚丽.表征被动双足行走的二维无边轮辐的动力学及稳定性分析[J].东南大学学报:自然科学版,2015,45(6):1066-1074. [doi:10.3969/j.issn.1001-0505.2015.06.008]
更新日期/Last Update: 2015-11-20